TEST PIT NO. 1 - 15 Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa	Coordinates: 25 Y0027546 X3174046
Giletti. Diueti Attica	COOLUMNIES. 23 1002/340 A31/4040

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1- 0.2- 0.3-		TRANSPORTED SOILS Dry, light brown, slightly cracked, LOOSE, clayey SAND to sandy CLAY		ered
0.4- 0.5- 0.6- 0.7-		VERY SOFT ROCK SHALE Light grey to white, highly weathered, fine-grained, horizontally bedded, very highly fractured, very soft rock. Excavates as angular 'plates'. Grades into soft rock towards base of test pit.		Not encountered
0.8- 0.9- 1.0- 1.1-				
1.2- 1.3- 1.4- 1.5-				
1.6- 1.7- 1.8-				
1.9- 2.0- 2.1-				
2.2- 2.3-				
2.4- 2.5- 2.6-				
2.7- 2.8- 2.9-				
3.0- 3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Slow rate of excavation

Groundwater conditions: Not encountered General remarks 2: Near refusal on soft rock

Base of test pit: 1.5m - near refusal General remarks 3: **TEST PIT NO. 1 - 16** Logged by: PH Oosthuizen

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Project: Lerato Park Phase 1 area	Date logged: 10 June 2009
-----------------------------------	---------------------------

Client: Bigen Africa Coordinates: 25 Y0027437 X3173977

			Tel: 012 430 2081	
Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.0 0.1- 0.2- 0.3-	$\langle \chi \chi \chi \chi \chi \chi \chi \chi \chi $	TRANSPORTED SOILS Dry, dark brown, cracked, STIFF, sandy CLAY to clayey SAND		red
0.4-			Disturbed	⊢ inte
0.5-	11 1		Disturbed	Not encountered
0.6-		CALCAREOUS RESIDUAL SHALE/MUDSTONE	1	t en
0.7-		Dry, light orange brown blotched white, DENSE, intact, silty to clayey	Disturbed	
0.8- 0.9-		SAND containing 'lenses' of white, fine, calcareous gravel.		
1.0-				
1.1				
1.2-				
1.3-			_	
1.4-		VERY SOFT ROCK SHALE Dark grey blotched white, completely to highly weathered, very-fine-		
1.5-		grained, horizontally bedded, very highly fractured, very soft rock.		
1.6-		Excavates as dark grey, fine 'chips'.		
1.7-				
1.8-				
1.9-				
2.0-				
2.1- 2.2-				
2.2				
2.4-				
2.5-				
2.6-				
2.7				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Not yet refusal

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 2.7m - maximum reach General remarks 3: **TEST PIT NO. 1 - 17** Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Client: Bigen Africa	Coordinates: 25 Y0027138 X3174034
Client: Digen Anica	Coordinates: 25 1002/130 A31/4034

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1 – 0.2 – 0.3 –	X X	TRANSPORTED SOILS Dry, dark brown, cracked, STIFF, sandy CLAY to clayey SAND		þe
0.4- 0.5- 0.6- 0.7- 0.8-		VERY SOFT ROCK SHALE Dark grey blotched white, completely to highly weathered, very-fine-grained, horizontally bedded, very highly fractured, very soft rock. Excavates as dark grey, angular 'plates'.		Not encountered
0.9- 1.0- 1.1- 1.2- 1.3-				
1.4- 1.5- 1.6-				
1.8- 1.9-				
2.0- 2.1-				
2.2-	_			
2.3-	-			
2.4- 2.5-				
2.6-	-			
2.7-				
2.8-				
2.9- 3.0-				
3.0-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Slow rate of excavation

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 1.4m - near refusal General remarks 3: TEST PIT NO. 1 - 18 Logg

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027138 X3174034

			_	
Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1 – 0.2 –		COMPACTED TRANSPORTED SOILS Dry, reddish brown, DENSE, intact, silty to clayey SAND		
0.3- 0.4- 0.5-	/ /	CALCAREOUS RESIDUAL SHALE/MUDSTONE Dry, light orange brown blotched white and dark grey, MEDIUM DENSE TO DENSE, intact, silty to clayey SAND containing 'lenses' of white, fine, calcareous gravel.		Not encountered
0.6- 0.7- 0.8- 0.9-		VERY SOFT ROCK SHALE Light grey blotched white, completely to highly weathered, very-fine- grained, horizontally bedded, very highly fractured, very soft rock. Excavates as light grey, angular 'plates'.		Not en
1.0- 1.1- 1.2-				
1.3-				
1.4 1.5-				
1.6-				
1.7-				
1.8-				
1.9-				
2.0-	-			
2.1-				
2.2-	-			
2.3-				
2.4-	-			
2.5-	-			
2.6-	-			
2.7-	1			
2.8-	1			
2.9-	1			
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Slow rate of excavation

Groundwater conditions: Not encountered General remarks 2: General surface waste in area

Base of test pit: 1.4m - near refusal General remarks 3:

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027022 X3174101

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1 0.2	λ,	TRANSPORTED SOILS Dry, reddish brown, cracked, STIFF, sandy CLAY to clayey SAND		Not encountered
0.2		VERY SOFT ROCK SHALE		iuno
0.4-		Light grey to white, completely to highly weathered, fine-grained, horizontally bedded, very highly fractured, very soft rock. Excavates	Bulk	euc
0.5-		as light grey, angular 'plates'.		lot o
0.6				
0.7-				
0.8- 0.9-				
1.0-				
1.1-				
1.2-				
1.3-				
1.4-				
1.5-				
1.6- 1.7-				
1.7				
1.9-				
2.0-				
2.1-				
2.2-				
2.3-				
2.4-				
2.5- 2.6-				
2.7-				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on very soft rock or harder

Groundwater conditions: *Not encountered* General remarks 2: *shale/mudstone*.

Base of test pit: 0.6m - refusal reached General remarks 3:

TEST PIT NO. 1 - 2 Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 9 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027512 X3173218

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1- 0.2- 0.3-		TRANSPORTED SOILS Dry, light orange brown, cracked, FIRM, sandy CLAY to clayey SAND		ered
0.4-		CALCAREOUS RESIDUAL SHALE/MUDSTONE	-	nut
0.5- 0.6-		Dry, light orange brown blotched white and dark grey, MEDIUM DENSE TO DENSE, intact, silty to clayey SAND containing 'lenses' of		Not encountered
0.7-		white, fine, calcareous gravel and dark grey, highly to completely weathered, angular shale fragments.		Ž
0.9-				
1.0-			Disturbed	
1.1- 1.2-				
1.3-				
1.4-				
1.5-				
1.6-				
1.7-				
1.8-				
1.9-				
2.0-				
2.1- 2.2-				
2.2				
2.4				
2.5-				
2.6-				
2.7				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Not yet refusal

Groundwater conditions: Not encountered General remarks 2:

General remarks 3: Base of test pit: 2.7m - maximum reach

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area

Date logged: 10 June 2009

Southern Geotechnical Engineering

Client: Bigen Africa

Coordinates: 25 Y0027223 X3174132

Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.0		TRANSPORTED SOILS Dry, red brown, DENSE, clayey SAND to sandy CLAY		ered
0.2 0.3 0.4 0.5 0.6	*********	SOFT ROCK OR HARDER DOLERITE Dark grey streaked white, highly to moderately weathered, medium to coarse-grained, massive, moderately fractured, soft rock or harder dolerite interlaced with minor, hard calcrete.		Not encountered
0.7-				
0.9-				
1.0-				
1.2-				
1.3-				
1.4-				
1.5-				
1.6-				
1.7-				
1.9-				
2.0-				
2.1-				
2.2-				
2.3-				
2.4-				
2.5-				
2.6-				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on soft rock or harder dolerite

Groundwater conditions: *Not encountered* General remarks 2:

Base of test pit: 0.4m - refusal reached General remarks 3:

TEST PIT NO. 1 - 21 Log

Client: Bigen Africa

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Coordinates: 25 Y0027382 X3174105

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1 0.2 0.3	/ /	TRANSPORTED SOILS Dry, red brown, DENSE, clayey SAND to sandy CLAY		Not encountered
0.4- 0.5- 0.6- 0.7-		VERY SOFT ROCK SHALE Light grey to white, highly weathered, very-fine-grained, horizontally bedded, very highly fractured, very soft rock. Excavates as light grey 'plates'.		Not enco
0.8- 0.9- 1.0- 1.1-				
1.3-				
1.4-				
1.5-				
1.6-				
1.7-				
1.8-				
1.9-				
2.0-				
2.1-				
2.2-				
2.3-				
2.4-				
2.5-				
2.6-				
2.7-				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on very soft to soft rock

Groundwater conditions: *Not encountered* General remarks 2: *shale/mudstone*

Base of test pit: 1.2m - refusal reached General remarks 3:

TEST PIT NO. 1 - 22 Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027448 X3174186

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1	14.1	TRANSPORTED SOILS Dry, brown, cracked, FIRM, sandy CLAY to clayey SAND		pe
0.2-		CALCAREOUS RESIDUAL SHALE/MUDSTONE		Not encountered
0.3-		Dry, light orange brown blotched white, DENSE, intact, silty to clayey		noo
0.4-		SAND containing 'lenses' of white, fine, calcareous gravel.		ot en
0.5- 0.6-				2
0.7-			Disturbed	
0.8-				
0.9-				
1.0-				
1.1 <i>-</i> 1.2 <i>-</i>				
1.3-		RESIDUAL GRADING INTO VERY SOFT ROCK SHALE		
1.4-		Dark grey blotched white, densely packed, angular fragments of shale/mudstone grading into highly weathered, very-fine-grained,		
1.5-		horizontally bedded, very highly fractured, very soft rock with		
1.6-		'pockets' of white calcareous gravel.		
1.7- 1.8-				
1.0				
2.0-				
2.1-				
2.2-				
2.3-				
2.4- 2.5-				
2.6-				
2.7				
2.8-				
2.9-				
3.0- 3.1-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Not yet refusal

Groundwater conditions: Not encountered General remarks 2:

General remarks 3: Base of test pit: 2.7m - maximum reach

TEST PIT NO. 1 - 23 Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027433 X3174284

<u> </u>				
Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5		TRANSPORTED SOILS Dry, brown, cracked, FIRM, sandy CLAY to clayey SAND CALCAREOUS RESIDUAL SHALE/MUDSTONE Dry, light orange brown blotched white, DENSE, intact, silty to clayey SAND containing 'lenses' of white, fine, calcareous gravel. RESIDUAL GRADING INTO VERY SOFT ROCK SHALE Dark grey blotched white, densely packed, angular fragments of shale/mudstone grading into highly weathered, very-fine-grained, horizontally bedded, very highly fractured, very soft rock with		Not encountered
1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1		'pockets' of white calcareous gravel.		

Excavation method: Test pit with Terex 820 TLB General remarks 1: Not yet refusal

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 2.7m - maximum reach General remarks 3:

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa	Coordinates: 25 Y0027282 X3174214

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1- 0.2- 0.3-		TRANSPORTED SOILS Dry, reddish brown, slightly cracked, DENSE, clayey SAND to sandy CLAY		untered
0.5 0.4- 0.5- 0.6-		SOFT ROCK OR HARDER DOLERITE Dark grey streaked white, highly to moderately weathered, medium to coarse-grained, massive, moderately fractured, soft rock or harder dolerite interlaced with minor, hard calcrete.		Not encountered
0.7				
0.9-				
1.0-				
1.1-				
1.2-				
1.3-				
1.4- 1.5-				
1.6-				
1.7-				
1.8-				
1.9-				
2.0-				
2.1-				
2.2-				
2.3-				
2.4-				
2.5-				
2.6- 2.7-				
2.7- 2.8-				
2.9 -				
3.0-				
3.1 <i>-</i>				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on soft rock or harder dolerite

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 0.7m - refusal reached General remarks 3: **TEST PIT NO. 1 - 25** Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027094 X3174224

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1-		TRANSPORTED SOILS		þ
0.2-		Slightly moist, reddish brown, DENSE, intact, clayey SAND to sandy CLAY. Refuse on soft rock or harder, dark grey, rounded dolerite		l ter
0.3		boulders probably grading into soft rock or harder dolerite.		Not encountered
0.4-				enc
0.5				fot
0.6-				
0.7-				
0.8-				
0.9-				
1.0-				
1.1-				
1.2-				
1.3-				
1.4- 1.5-				
1.6-				
1.7-				
1.8-				
1.9-				
2.0-				
2.1-				
2.2-				
2.3-				
2.4-				
2.5-				
2.6-				
2.7-				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on densely packed boulders

Groundwater conditions: Not encountered General remarks 2: and/or soft rock or harder dolerite

Base of test pit: 0.3m - refusal reached General remarks 3: **TEST PIT NO. 1 - 26** Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027042 X3174313

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1 - 0.2 - 0.3 - 0.4 - 0.5 -		TRANSPORTED SOILS Dry, reddish brown, DENSE, slightly open-structured, clayey to silty SAND		Not encountered
0.5	**************************************	RESIDUAL DOLERITE GRADING INTO SOFT ROCK DOLERITE		enc
0.7-	++++++++	Dark grey speckled black, VERY DENSE, coarse GRAVEL grading into highly to moderately weathered, medium to coarse-grained,		Not
0.8-	******** ********** *********	massive, moderately fractured, soft rock or harder dolerite.	Bulk	
1.0-	+++++++++			
1.1-	+++++++++			
1.2-	-			
1.3-	_			
1.4-	-			
1.5-	_			
1.6-	-			
1.7-				
1.8-	_			
1.9-				
2.0-				
2.1-	-			
2.2-	_			
2.3-				
2.4-	1			
2.5-	1			
2.6-	1			
2.7-				
2.8- 2.9-				
3.0-	1			
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on soft rock or harder dolerite

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 1.1m - refusal reached **General remarks 3:** TEST PIT NO. 1 - 27 Logged by: PH Oosthuizen

Client: Bigen Africa

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687

Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1		TRANSPORTED SOILS		
0.2-		Slightly moist, reddish brown, MEDIUM DENSE, slightly open- structured, clayey to silty SAND		
0.3-	++++++++++			ere
0.4-		RESIDUAL DOLERITE GRADING INTO SOFT ROCK DOLERITE Dark grey speckled black, VERY DENSE, coarse GRAVEL grading		Not encountered
0.5	++++++++++	into highly to moderately weathered, medium to coarse-grained,		5
0.6-		massive, moderately fractured, soft rock or harder dolerite.		ot e
0.7-				Z
0.8-				
0.9- 1.0-				
1.1				
1.2-				
1.3-				
1.4-				
1.5-				
1.6-				
1.7-				
1.8-				
1.9-				
2.0- 2.1-				
2.1				
2.3-				
2.4-				
2.5-				
2.6-				
2.7-				
2.8-				
2.9-				
3.0-				
3.1-				

Coordinates: 25 Y0027194 X3174299

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on soft rock or harder dolerite

Groundwater conditions: *Not encountered* General remarks 2:

Base of test pit: 0.5m - refusal reached General remarks 3:

TEST PIT NO. 1 - 28 Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa	Coordinates: 25 Y0027324 X3174339

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1 – 0.2 – 0.3 –	<i>\(\)</i>	TRANSPORTED SOILS Dry, reddish brown, cracked, STIFF, sandy CLAY grading into clayey SAND		red
0.5- 0.6-		VERY SOFT ROCK SHALE Light grey, highly weathered, very fine-grained, bedded, very highly fractured, very soft rock shale/mudstone		Not encountered
0.7-				Not
0.9				
1.0-				
1.1-				
1.2-				
1.3-				
1.4- 1.5-				
1.6-				
1.7-				
1.8-				
1.9-				
2.0-				
2.1-				
2.2-				
2.3-				
2.4-				
2.5-				
2.6-				
2.7-				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on very soft rock shale/mudstone

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 0.9m - refusal reached General remarks 3: TEST PIT NO. 1 - 29 Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027385 X3174435

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1 0.2	<i>}</i>	TRANSPORTED SOILS Dry, orange brown, cracked, STIFF, sandy CLAY to clayey SAND		
0.2-		CALCAREOUS RESIDUAL SHALE/MUDSTONE GRADING INTO		ered
0.4-		FINE, POWDERY CALCRETE Dry, light brown blotched white and dark grey, DENSE, intact, silty to		Not encountered
0.5-		clayey SAND containing 'lenses' of white, fine, calcareous gravel and dark grey, highly to completely weathered, angular shale/mudstone		encc
0.6- 0.7-		fragments. Grades into white, MEDIUM DENSE, fine powdery	Disturbed	Not
0.8-	,,,,,	calcrete towards base of test pit.		
0.9-				
1.0- 1.1-				
1.2-				
1.3-				
1.4-				
1.5- 1.6-				
1.7-				
1.8-				
1.9- 2.0-				
2.0 2.1				
2.2-				
2.3-				
2.4- 2.5-				
2.6-				
2.7				
2.8- 2.9-				
2.9 3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Not yet refusal

Groundwater conditions: *Not encountered* General remarks 2:

Base of test pit: 2.7m - maximum reach General remarks 3:

Logged by: PH Oosthuizen TEST PIT NO. 1 - 3

Project: Lerato Park Phase 1 area Date logged: 9 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

1 Tojecti Ecrato i anti maco i arca	Date logged. 6 dane 2000

Client: Bigen Africa Coordinates: 25 Y0027615 X3173332

		Tel: 012 430 2081		
Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1 – 0.2 – 0.3 – 0.4 –	\ \ \ \ \ \ \	TRANSPORTED SOILS Dry, light orange brown, cracked, FIRM, sandy CLAY to clayey SAND		ıtered
0.5-			Disturbed	│ Jino │
0.6- 0.7- 0.8- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4-		CALCAREOUS RESIDUAL SHALE/MUDSTONE Dry, light orange brown blotched white and dark grey, DENSE TO VERY DENSE, intact, silty to clayey SAND containing 'lenses' of white, fine, calcareous gravel and dark grey, highly to completely weathered, angular shale fragments.		Not encountered
1.5-		RESIDUAL GRADING INTO VERY SOFT ROCK		
1.5- 1.6- 1.7- 1.8-		SHALE/MUDSTONE Dark grey blotched dark orange, completely to highly weathered, fine-grained, very highly fractured, very soft rock		
1.9- 2.0- 2.1-				
2.2-				
2.4- 2.5-				
2.6- 2.7-				
2.8				
3.0-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Not yet refusal

Groundwater conditions: Not encountered General remarks 2:

General remarks 3: Base of test pit: 2.8m - maximum reach

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Oliont, Digon Africa	Conveligation, 05 V0007010 V0174400
Client: Bigen Africa	Coordinates: 25 Y0027213 X3174409

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1- 0.2- 0.3-		TRANSPORTED SOILS Slightly moist, reddish brown, LOOSE, open-structured, slightly clayey SAND		ntered
0.4- 0.5- 0.6- 0.7-		RESIDUAL DOLERITE GRADING INTO SOFT ROCK DOLERITE Dark grey speckled black and streaked white, VERY DENSE, coarse, gravelly SAND grading into moderately weathered, medium to coarse grained, massive, moderately fractured, very soft rock grading into soft rock or harder dolerite		Not encountered
-0.8]+]+]+]+]+]+]+]	Soft fock of flatder dolerite		
0.9				
1.0- 1.1-				
1.2-				
1.3-				
1.4-				
1.5-				
1.6-				
1.7-				
1.8-				
1.9-				
2.0-				
2.1 – 2.2 –				
2.3-				
2.4-				
2.5-				
2.6-				
2.7-				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on soft rock dolerite

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 0.8m - refusal reached General remarks 3: TEST PIT NO. 1 - 31 Logged by: PH Oosthuizen

Client: Bigen Africa

3.0 – 3.1 –

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Coordinates: 25 Y0027055 X3174412

Depth (m)		SAMPLING	GROUND WATER LEVEL
0.0	Current NGL		
0.1- 0.2- 0.3- 0.4	TRANSPORTED SOILS Slightly moist, reddish brown, LOOSE, open-structured, slightly clayey SAND		ntered
0.4 0.5 0.6 0.7 0.8 0.9	RESIDUAL DOLERITE GRADING INTO SOFT ROCK DOLERITE Dark grey speckled black and streaked white, VERY DENSE, coarse, gravelly SAND grading into moderately weathered, medium to coarse grained, massive, moderately fractured, very soft rock grading into soft rock or harder dolerite		Not encountered
1.0	 		
1.1-			
1.2-			
1.3-			
1.4			
1.5			
1.6			
1.7			
1.8- 1.9-			
2.0			
2.1			
2.2			
2.3-			
2.4-			
2.5-			
2.6-			
2.7-			
2.8			
2.9			

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on soft rock dolerite

Groundwater conditions: *Not encountered* General remarks 2:

Base of test pit: 1.0m - refusal reached General remarks 3:

TEST PIT NO. 1 - 32 Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Client: Bigen Africa	Coordinates: 25 Y0027064 X3174539
Client. Digen Annea	Cooldinates: 25 70027004 70174505

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1 0.2 0.3		TRANSPORTED SOILS Slightly moist, reddish brown, LOOSE, open-structured, slightly clayey SAND		red
0.4 0.5- 0.6- 0.7-		SOFT ROCK OR HARDER DOLERITE Dark grey speckled black and streaked white, VERY DENSE, coarse, gravelly SAND grading into moderately weathered, medium to coarse grained, massive, moderately fractured, very soft rock grading into soft rock or harder dolerite		Not encountered
0.8- 0.9- 1.0-				
1.1- 1.2-				
1.2-				
1.4-				
1.5-				
1.6-				
1.7-	-			
1.8-				
1.9-				
2.0-				
2.1-				
2.3-				
2.4-				
2.5-				
2.6-				
2.7-				
2.8-	-			
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on soft rock dolerite

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 0.4m - refusal reached General remarks 3: **TEST PIT NO. 1 - 33** Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: <i>Bigen Africa</i>	Coordinates: 25 Y0027206 X3174521

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1- 0.2- 0.3- 0.4-		TRANSPORTED SOILS Slightly moist, reddish brown, LOOSE to MEDIUM DENSE, slightly open-structured, slightly clayey SAND		ntered
0.5- 0.6- 0.7- 0.8-		SOFT ROCK OR HARDER DOLERITE Dark grey speckled black and streaked white, VERY DENSE, coarse, gravelly SAND grading into moderately weathered, medium to coarse grained, massive, moderately fractured, very soft rock grading into soft rock or harder dolerite	Bulk	Not encountered
0.9-	********* *********			
1.1-				
1.2-				
1.3-				
1.4-				
1.5-				
1.6-				
1.7-				
1.8-				
1.9-				
2.0- 2.1-				
2.1				
2.3-				
2.4-				
2.5-				
2.6-				
2.7-				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on soft rock dolerite

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 1.0m - refusal reached General remarks 3: **TEST PIT NO. 1 - 34** Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Client: Bigen Africa	Coordinates: 25 Y0027352 X3174526

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0 — 0.0 — 0.1 — 0.2 — 0.3 — 0.4 — 0.5 — 0.6 — 0.7 — 0.8 — 1.1 — 1.2 — 1.3 — 1.4 — 1.5 — 1.6 — 1.7 — 1.8 — 1.9 — 2.1 — 2.2 — 2.3 — 2.4 — 2.5 — 2.6 — 0.6 — 0.7 — 0.8 — 0.9 —		Current NGL TRANSPORTED SOILS Slightly moist, orange brown, FIRM, cracked, sandy CLAY to clayey SAND CALCAREOUS RESIDUAL SHALE/MUDSTONE Slightly moist, orange brown blotched white, DENSE, slightly clayey SAND containing minor 'lenses' of calcareous gravel. CALCAREOUS RESIDUAL SHALE/MUDSTONE Slightly moist, dark orange blotched dark grey, STIFF, shattered, silty CLAY with minor 'pockets' of white, calcareous gravel. Grades into dark grey, completely to highly weathered, shale/mudstone towards base of test pit.	Disturbed	Not encountered
2.7 2.8- 2.9- 3.0- 3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Not yet refusal

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 2.7m - maximum reach General remarks 3: **TEST PIT NO. 1 - 35** Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Client: Bigen Africa

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1 - 0.2 - 0.3 - 0.4 - 0.5 -	, , , , , , , , , , , , , , , , , , ,	TRANSPORTED SOILS Moist, dark orange, DENSE, intact, clayey SAND to sandy CLAY		Not encountered
0.6- 0.7- 0.8- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6- 1.7- 2.0- 2.1- 2.2- 2.3- 2.4- 2.5- 2.6-		CALCAREOUS RESIDUAL SHALE/MUDSTONE Dry, light grey blotched dark orange, DENSE, intact, silty to clayey SAND containing 'lenses' of white, fine, calcareous gravel and dark grey, highly to completely weathered, angular shale fragments. Gradually gades into dark grey, completely to highly weathered, very fine grained, very highly fractured, very soft rock shale/mudstone	Bulk	Not end
2.7 2.8- 2.9- 3.0-				
3.0-	-			

Coordinates: 25 Y0027305 X3174637

Excavation method: Test pit with Terex 820 TLB General remarks 1: Not yet refusal

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 2.7m - maximum reach General remarks 3: TEST PIT NO. 1 - 36 Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027138 X3174630

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1- 0.2-		TRANSPORTED SOILS Slightly moist, reddish brown, MEDIUM DENSE, clayey SAND to sandy CLAY		pe,
0.3- 0.4- 0.5- 0.6- 0.7-		SOFT ROCK DOLERITE Dark grey speckled black, moderately weathered, medium to coarse- grained, massive, moderately fractured, soft rock or harder dolerite		Not encountered
0.8	+++++++++			
0.9- 1.0-				
1.1-				
1.2-				
1.3-				
1.4-				
1.5-				
1.6-				
1.7-				
1.8-				
1.9-				
2.0-				
2.1-				
2.2-				
2.3-				
2.4-				
2.5-				
2.6-				
2.7- 2.8-				
2.6 2.9				
3.0-				
3.1-				
0.1				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on soft rock dolerite

Groundwater conditions: *Not encountered* General remarks 2:

Base of test pit: 0.8m - refusal reached General remarks 3:

TEST PIT NO. 1 - 37 Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027109 X3174770

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1- 0.2-		TRANSPORTED SOILS Slightly moist, reddish brown, MEDIUM DENSE, clayey SAND to sandy CLAY		pe,
0.3- 0.4- 		SOFT ROCK DOLERITE Dark grey speckled black, moderately weathered, medium to coarsegrained, massive, moderately fractured, soft rock or harder dolerite		Not encountered
0.6-				ot e
0.7-				Ž
0.8-				
1.0-				
1.1-				
1.2-				
1.3-				
1.4-				
1.5-				
1.6-				
1.7-				
1.8-				
1.9-				
2.0- 2.1-				
2.2				
2.3-				
2.4				
2.5-				
2.6-				
2.7-				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on soft rock dolerite

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 0.5m - refusal reached **General remarks 3:**

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Client: Bigen Africa	Coordinates: 25 Y0027283 X3174747
Chorici Zigori / imica	0001411141001 =0 10021 =00 1011 11 11

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1 – 0.2 – 0.3 –	/ /	TRANSPORTED SOILS Dry, light brown, DENSE, intact, clayey SAND		red
0.3		RESIDUAL GRADING INTO VERY SOFT ROCK SHALE		ınte
0.5- 0.6-		Light grey stained orange brown along bedding planes, completely to highly weathered, fine-grained, bedded, very highly fractured, very soft rock shale/mudstone. Excavates as light grey, flat 'plates'.		Not encountered
0.7- 0.8-			Bulk	Z
0.9- 1.0-				
1.1-				
1.2-				
1.3- 1.4-				
1.5-				
1.6-				
1.7-				
1.8-				
1.9-				
2.0-				
2.1-				
2.2-				
2.3-				
2.4-				
2.5-				
2.6- 2.7-				
2.7				
2.9-				
3.0-				
3.1-				
_				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on soft rock shale/mudstone

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 1.1m - refusal reached General remarks 3: **TEST PIT NO. 1 - 39** Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa	Coordinates: 25 Y0027458 X3174773

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1- 0.2- 0.3-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TRANSPORTED SOILS Dry, light brown, STIFF, slightly cracked, sandy CLAY to clayey SAND		Not encountered
0.4-		VERY SOFT ROCK SHALE		l sour
0.5- 0.6-		Dark grey stained orange brown and black along bedding planes, highly weathered, fine-grained, bedded, very highly fractured, very		ot enc
0.7-		soft rock shale/mudstone. Excavates as dark grey, flat 'plates'.		Z
0.8- 0.9-				
1.0-				
1.1-				
1.2-				
1.3-				
1.4- 1.5-				
1.6-				
1.7-				
1.8-				
1.9- 				
2.0 2.1-				
2.2-				
2.3-				
2.4-				
2.5- 2.6-				
2.7-				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Near refusal on very soft rock

Groundwater conditions: Not encountered General remarks 2: shale/mudstone.

Base of test pit: 2.0m - near refusal General remarks 3:

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 9 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027760 X3173433

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1 - 0.2 - 0.3 - 0.4 - 0.5 -	<i>/ / / / / / / / / / / / / / / / / / / </i>	TRANSPORTED SOILS Dry, light orange brown, cracked, FIRM, sandy CLAY to clayey SAND		untered
0.6- 0.7- 0.8- 0.9- 1.0- 1.1- 1.2- 1.3-		CALCAREOUS RESIDUAL SHALE/MUDSTONE Dry, light orange brown blotched white and dark grey, DENSE TO VERY DENSE, intact, silty to clayey SAND containing 'lenses' of white, fine, calcareous gravel and dark grey, highly to completely weathered, angular shale fragments.		Not encountered
1.4- 1.5- 1.6- 1.7- 1.8- 1.9- 2.0- 2.1- 2.2- 2.3- 2.4- 2.5- 2.6- 2.7- 		RESIDUAL GRADING INTO VERY SOFT ROCK SHALE/MUDSTONE Dark grey blotched dark orange, completely to highly weathered, fine- grained, very highly fractured, very soft rock		
2.8 2.9 3.0 3.1				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Not yet refusal

Groundwater conditions: Not encountered General remarks 2: Surface cracked

Base of test pit: 2.8m - maximum reach General remarks 3:

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027618 X3174775

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1- 0.2- 0.3-		TRANSPORTED SOILS Slightly moist, reddish brown, MEDIUM DENSE, clayey SAND to sandy CLAY		red
0.5- 0.4- 0.5-		SOFT ROCK DOLERITE Dark grey speckled black, moderately weathered, medium to coarse- grained, massive, moderately fractured, soft rock or harder dolerite		Not encountered
0.7-				Zot
0.7				_
0.9-				
1.0-	-			
1.1-				
1.2-	_			
1.3-				
1.4-				
1.5-				
1.6-				
1.7-				
1.8- 1.9-				
2.0-				
2.0 2.1-				
2.2-				
2.3-				
2.4-				
2.5-				
2.6-				
2.7-				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on soft rock dolerite

Groundwater conditions: *Not encountered* General remarks 2:

Base of test pit: 0.6m - refusal reached General remarks 3:

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.0 0.1 0.2 0.3 0.4 0.5		TRANSPORTED SOILS Slightly moist, reddish brown, MEDIUM DENSE, clayey SAND to sandy CLAY		Not encountered
			Disturbed	_
0.6- 0.7- 0.8- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6- 1.7- 2.0- 2.1- 2.2- 2.3- 2.4- 2.5- 2.6- 2.7-		VERY SOFT ROCK SHALE Light grey grading into dark grey with depth, highly weathered, very fine-grained, bedded, very highly fractured, very soft rock shale/mudstone. Excavates as fine, white, shaly 'flakes'.		Not 6
2.8- 2.9- 3.0- 3.1-	_			

Excavation method: Test pit with Terex 820 TLB General remarks 1: Not at refusal

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 2.6m - maximum reach General remarks 3: **TEST PIT NO. 1 - 42** Logged by: PH Oosthuizen

Southern Geotechnical

Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Client: Bigen Africa Coordinates: 25 Y0027403 X3174880

			Tel: 012 430 2081	
Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1		TRANSPORTED SOILS		
0.1		Slightly moist, reddish brown, MEDIUM DENSE, clayey SAND to		_
0.3-		very soft rock shale		erec
0.4-		Light grey, highly weathered, very fine-grained, bedded, very highly		Inte
0.5-		fractured, very soft rock shale/mudstone. Excavates as fine, white,		ICOL
0.6-		shaly 'flakes'. Approaches very soft to soft rock shale towards base		Not encountered
0.7-		of test pit.	Bulk	NO N
0.8-				
0.9-				
1.0-				
1.1-				
1.2				
1.3-				
1.4-				
1.5- 1.6-				
1.7-				
1.8-				
1.9-				
2.0-				
2.1-				
2.2-				
2.3-				
2.4-				
2.5-				
2.6-				
2.7-				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Near refusal on very soft to soft rock

Groundwater conditions: Not encountered General remarks 2: shale/mudstone.

Base of test pit: 1.2m - near refusal **General remarks 3:**

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Cliente Rigen Africa	Coordinator, 25 V0027157 V2174927
Client: <i>Bigen Africa</i>	Coordinates: 25 Y0027157 X3174827

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.0 0.1 0.2 0.3		TRANSPORTED SOILS Dry, reddish brown, LOOSE, slightly open-structured, silty to clayey SAND		red
0.4 0.5 0.6 0.7		VERY SOFT TO SOFT ROCK DOLERITE Dark grey speckled black and streaked white, moderately weathered, medium-grained, massive, moderately fractured, soft rock or harder dolerite. Refuse on soft rock or harder dolerite.		Not encountered
0.8	++++++++++			
0.9-				
1.0-				
1.1-				
1.2-				
1.3-				
1.4-				
1.5-				
1.6-				
1.7-				
1.8-				
1.9-				
2.0- 2.1-				
2.1-				
2.3-				
2.4-				
2.5-				
2.6-				
2.7-				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on soft rock dolerite

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 0.8m - refusal reached **General remarks 3:**

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa	Coordinates: 25 Y0027076 X3174970
Ciletti. Digeti Atrica	Cooldinates. 25 1002/0/0 X51/45/0

			181. 012 430 2001	
Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.0 0.1- 0.2- 0.3- 0.4-		TRANSPORTED SOILS Slightly moist, reddish brown, LOOSE to MEDIUM DENSE, intact, slightly clayey SAND.		ntered
0.4 0.5- 0.6- 0.7-		VERY SOFT TO SOFT ROCK DOLERITE Dark grey speckled black and streaked white, moderately weathered, medium-grained, massive, moderately fractured, soft rock or harder dolerite. Refuse on soft rock or harder dolerite.		Not encountered
0.8- 0.9- 1.0-			Bulk	
1.1- 1.2- 1.3	**********			
1.4- 1.5-				
1.6-				
1.7-				
1.8-				
1.9-				
2.0-				
2.1-				
2.2-				
2.3- 2.4-				
2.4 2.5				
2.6-				
2.7-				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on soft rock dolerite

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 1.3m - refusal reached **General remarks 3:**

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa	Coordinates: 25 Y0027308 X3174970
Client: Bigen Africa	Coordinates: 25 70027300 A3174970

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1 0.2 0.3		TRANSPORTED SOILS Slightly moist, reddish brown, LOOSE to MEDIUM DENSE, intact, slightly clayey SAND.		red
0.5 		VERY SOFT TO SOFT ROCK SHALE Dark orange, highly weathered, fine-grained, bedded, very highly fractured, very soft to soft rock shale/mudstone. Excavates as coarse, angular shaly 'chips'.		Not encountered
0.7- 0.8- 0.9-				Z
1.0-				
1.1-				
1.2- 1.3-				
1.4-				
1.5-				
1.6-				
1.7-				
1.8-				
1.9-				
2.0-				
2.1-				
2.2				
2.4				
2.5-				
2.6-				
2.7-				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on soft rock shale/mudstone

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 0.4m - refusal reached General remarks 3: **TEST PIT NO. 1 - 46** Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027497 X3175016

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
		Current NGL		
0.0 0.1 0.2 0.3 0.4		TRANSPORTED SOILS Dry, reddish brown, slightly cracked, FIRM, clayey SAND.		ntered
0.4- 0.5- 0.6- 0.7-		VERY SOFT ROCK SHALE Light grey stained orange along bedding planes, highly weathered, fine-grained, bedded, very highly fractured, very soft rock shale/mudstone. Excavates as grey, coarse, 'plates' of shale.		Not encountered
0.8- 0.9- 1.0-				
1.1- 1.2- 1.3-				
1.4- 1.5- 1.6-				
1.7- 1.8- 1.9- 2.0-				
2.1 – 2.2 – 2.3 –				
2.4- 2.5- 2.6-				
2.7- 2.8- 2.9-				
3.0- 3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Not yet refusal

Groundwater conditions: Not encountered General remarks 2:

General remarks 3: Base of test pit: 2.6m - maximum reach

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area

Date logged: 10 June 2009

Southern Geotechnical Engineering

Client: Bigen Africa

Coordinates: 25 Y0027366 X3175106

Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.0 - 0.0 - 0.1 - 0.2 - 0.3 - 0.4 - 0.5 - 0.6 - 0.7 - 0.8 - 0.9 - 1.0 - 1.1 - 1.5 - 1.6 - 1.7 - 1.8 - 1.9 - 2.0 - 2.1 - 2.2 - 2.3 - 2.4 - 2.5 - 2.6 - 0.5 - 0.1 - 0.5 -		Current NGL SOFT ROCK OR HARDER DOLERITE Dark grey speckled black, moderately weathered, medium-grained, massive, moderately fractured, soft rock or harder dolerite. Excavate rounded dolerite boulders.		Not encountered
2.7- 2.8- 2.9- 3.0- 3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on soft rock or harder dolerite

Groundwater conditions: *Not encountered* General remarks 2:

Base of test pit: 0.2m - refusal reached General remarks 3:

TEST PIT NO. 1 - 48 Logged by: PH Oosthuizen

Client: Bigen Africa

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.0 0.1- 0.2- 0.3- 0.4-	/ /	TRANSPORTED SOILS Dry, dark brown blotched white, MEDIUM DENSE, intact, slightly clayey SAND containing minor 'lenses' of white, calcareous gravel.		Not encountered
0.5		VERY SOFT ROCK SHALE		COU
0.6-		Light grey stained dark orange along bedding planes, highly weathered, very-fine-grained, horizontally bedded, very highly		en
0.7-		fractured, very soft rock. Excavates as light grey, 'plates'.		Not
0.8-				
0.9-				
1.0-				-
1.1-				
1.2-				
1.3-				
1.4-				
1.5-				
1.6-				
1.7-			D !!	
1.8- 1.9-			Bulk	
2.0-				
2.1-				
2.2-				
2.3-				
2.4-				
2.5-				
2.6				
2.7-				
2.8-				
2.9-				
3.0-				
3.1-	1			

Coordinates: 25 Y0027184 X3175094

Excavation method: Test pit with Terex 820 TLB General remarks 1: Not yet refusal

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 2.6m - maximum reach General remarks 3: **TEST PIT NO. 1 - 49**

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Client: Bigen Africa	Coordinates: 25 Y0027146 X3175244

			161. 012 430 2061	
Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1		TRANSPORTED SOILS		
0.1		Slightly moist, dark brown blotched white, DENSE, intact, slightly		
0.2		clayey SAND containing minor 'lenses' of white, calcareous gravel.		red
0.4-				nte
0.4				nos
0.6-				eu
0.7-				Not encountered
0.8-				
0.9-				
1.0-		CALCAREOUS RESIDUAL SHALE/MUDSTONE		
1.1-		Slightly moist, orange brown blotched white and dark grey, MEDIUM DENSE, silty to clayey SAND containing minor 'lenses' of white,	Disturbed	_
1.2-		calcareous gravel and pockets of dark grey, completely weathered		
1.3-		mudstone.		
1.4-				
1.5-		VEDV COET DOOK OUT E		
1.6-		VERY SOFT ROCK SHALE Dark grey stained dark orange along bedding planes, highly		
1.7-		weathered, very-fine-grained, horizontally bedded, very highly		
1.8-		fractured, very soft rock. Excavates as light grey, 'plates'.		
1.9-				
2.0-				
2.1-				
2.2-				
2.3-				
2.4-				
2.5-				
2.6				
2.7-				
2.8-				
2.9-				
3.0- 3.1-				
3.1				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Not yet refusal

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 2.6m - maximum reach General remarks 3: TEST PIT NO. 1 - 5 Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 9 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square

Client: Bige	en Africa	Coordinates: 25 Y0027779 X3173589	P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1 – 0.2 – 0.3 – 0.4 – 0.5 –		TRANSPORTED SOILS Slightly moist, dark orange brown, cracked, STIFF, sandy CLAY to clayey SAND		Not encountered
0.6			Disturbed] 00
0.7 0.8 0.9 1.0		VERY SOFT ROCK SHALE Light grey, highly weathered, fine-grained, very highly fractured, very soft rock. Excavates as fine 'chips'.		Not e
1.1-				
1.2				
1.3-	_			
1.4-				
1.5-				
1.6-				
1.7				
1.9-				
2.0-				
2.1-	-			
2.2-	1			
2.3-	_			
2.4-	1			
2.5-	-			
2.6-				
2.7-	1			
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on VSR shale/mudstone

Groundwater conditions: Not encountered General remarks 2: Surface cracked

Base of test pit: 1.2m - refusal reached General remarks 3:

TEST PIT NO. 1 - 50

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027428 X3175236

Depth (m)	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	Current NGL TRANSPORTED SOILS Slightly moist, reddish brown, FIRM, cracked, sandy CLAY to clayey SAND. TRANSPORTED SOILS Dry, light reddish brown, DENSE, slightly open-structured, silty to clayey SAND		Not encountered
0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5-		Disturbed	
1.6- 1.7- 1.8- 1.9- 2.0- 2.1- 2.2- 2.3- 2.4- 2.5- 2.6-	VERY SOFT ROCK SHALE Light grey stained dark orange along bedding planes, highly weathered, very-fine-grained, horizontally bedded, very highly fractured, very soft rock. Excavates as thin light grey, 'plates'.		
2.6 2.7- 2.8- 2.9- 3.0- 3.1-			

Excavation method: Test pit with Terex 820 TLB General remarks 1: Not yet refusal

Groundwater conditions: *Not encountered* General remarks 2:

Base of test pit: 2.6m - maximum reach General remarks 3:

TEST PIT NO. 1 - 51 Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Client: Bigen Africa	Coordinates: 25 Y0027276 X3175374

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.0 0.1 0.2 0.3 0.4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TRANSPORTED SOILS Dry, dark brown, cracked, FIRM, sandy CLAY to clayey SAND		ntered
0.5- 0.6- 0.7- 0.8-	/ / /	CALCAREOUS RESIDUAL SHALE/MUDSTONE Slightly moist, light orange brown blotched white, MEDIUM DENSE, intact, silty to clayey SAND containing 'lenses' of white, fine, calcareous gravel.		Not encountered
0.9-				
1.0-			Disturbed	
1.1- 1.2- 1.3-				
1.4-		VERY SOFT ROCK SHALE	_	
1.5- 1.6- 1.7- 1.8-		Dark grey blotched white, highly weathered, very-fine-grained, horizontally bedded, very highly fractured, very soft rock with 'pockets' of white calcareous gravel.		
1.9- 2.0-				
2.1-				
2.3- 2.4- 2.5-				
2.5- 2.6- 				
2.7 2.8- 2.9-				
3.0- 3.1-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Not yet refusal

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 2.7m - maximum reach General remarks 3: TEST PIT NO. 1 - 52 Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 10 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027250 X3175461

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.0 0.1- 0.2- 0.3- 0.4-	*	TRANSPORTED SOILS Dry, dark brown, cracked, STIFF, sandy CLAY to clayey SAND	Disturbed	Not encountered
0.5-	Huk Hu	CALCAREOUS RESIDUAL SHALE/MUDSTONE	Disturbed	22
0.6- 0.7- 0.8- 0.9- 1.0- 1.1-		Slightly moist, light orange brown blotched white, DENSE, intact, silty to clayey SAND containing 'lenses' of white, fine, calcareous gravel.		Not e
1.1- 1.2- 1.3- 1.4- 1.5-		VERY SOFT ROCK SHALE Dark grey blotched dark orange and white, highly weathered, very- fine-grained, horizontally bedded, very highly fractured, very soft rock with 'pockets' of white calcareous gravel.		
1.6- 1.7- 1.8- 1.9-				
2.0- 2.1- 2.2- 2.3-				
2.4- 2.5- 2.6-				
2.7 2.8- 2.9- 3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Not yet refusal

Groundwater conditions: *Not encountered* General remarks 2:

Base of test pit: 2.7m - maximum reach General remarks 3:

TEST PIT NO. 1 - 6

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 9 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Client: Bigen Africa	Coordinates: 25 Y0027593 X3173492
Oliciit. Digeli Alliea	0001dillates. 20 1002/000 X01/0402

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.0 0.1 0.2 0.3 0.4		TRANSPORTED SOILS Slightly moist, light brown, slightly cracked, MEDIUM DENSE, clayey SAND VERY SOFT ROCK SHALE		Not encountered
0.5-		Light grey, highly weathered, fine-grained, very highly fractured, very		- no:
0.6-		soft rock. Grades into soft rock towards base of test pit.		en
0.7-				Not
0.8-				
0.9-				
1.0- 1.1-			Bulk	
1.1-				
1.3-				
1.4-				
1.5-				
1.6-				
1.7-				
1.8-				
1.9-				
2.0-				
2.1- 2.2-	1			
2.2				
2.4-				
2.5-				
2.6-	-			
2.7-				
2.8-				
2.9-				
3.0-				
3.1-	1			
=			1	

Excavation method: Test pit with Terex 820 TLB General remarks 1: Near refusal on VSR shale/mudstone

Groundwater conditions: Not encountered General remarks 2:

Base of test pit: 1.6m - near refusal reached General remarks 3: **TEST PIT NO. 1 - 7**

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 9 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa	Coordinates: 25 Y0027459 X3173350

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1 - 0.2 - 0.3 - 0.4 - 0.5 -		TRANSPORTED SOILS Slightly moist, dark reddish brown, cracked, STIFF, sandy CLAY		Not encountered
0.6-			Disturbed	u o l
0.7 – 0.8 – 0.9 – 1.0 – 1.1 – 1.2 – 1.3 – 1.5 – 1.6 – 1.7 – 1.8 – 2.0 – 2.1 – 2.2 – 2.3 – 2.4 –		VERY SOFT ROCK SHALE Light grey grading into dark grey with depth, slightly calcified, highly to moderately weathered with depth, fine-grained, very highly fractured, very soft rock grading into soft rock towards base of test pit.		Not e
2.5- 2.6-				
2.7-				
2.8-				
2.9-				
3.0-				
3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Near refusal on VSR shale/mudstone

Groundwater conditions: Not encountered General remarks 2: Slow rate of excavation

Base of test pit: 2.4m - near refusal reached General remarks 3: TEST PIT NO. 1 - 8 Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 9 June 2009

Southern Geotechnical Engineering
P.O. Box 1687
Brooklyn Square
0075
Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027412 X3173526

			161. 012 430 2081	
Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.1 – 0.2 – 0.3 – 0.4 – 0.5 – 0.6 –		TRANSPORTED SOILS Slightly moist, dark brown, cracked, STIFF, sandy CLAY	Diatruska	Not encountered
0.7- 0.8- 0.9- 1.0- 1.1-		CALCAREOUS RESIDUAL SHALE/MUDSTONE Dry, light orange brown blotched white and dark grey, DENSE, intact, silty to clayey SAND containing 'lenses' of white, fine, calcareous gravel and dark grey, highly to completely weathered, angular shale fragments.	Disturbed	N
1.2- 1.3- 1.4- 1.5- 1.6- 1.7- 1.8-			Disturbed	
1.8- 1.9- 2.0- 2.1- 2.2- 2.3- 2.4- 2.5- 2.6- 2.7- 		VERY SOFT ROCK SHALE/MUDSTONE Light brown, highly weathered, fine-grained, very highly fractured, very soft rock		
2.8 2.9 3.0 3.1				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refusal not reached

Groundwater conditions: Not encountered General remarks 2:

General remarks 3: Base of test pit: 2.8m - maximum reach

TEST PIT NO. 1 - 9

Logged by: PH Oosthuizen

Project: Lerato Park Phase 1 area Date logged: 9 June 2009

Southern Geotechnical Engineering P.O. Box 1687 Brooklyn Square 0075 Tel: 012 430 2081

Client: Bigen Africa Coordinates: 25 Y0027565 X3173605

Depth (m)	LEGEND	DESCRIPTION	SAMPLING	GROUND WATER LEVEL
0.0		Current NGL		
0.0 0.1 – 0.2 – 0.3 – 0.4 – 0.5 –		TRANSPORTED SOILS Slightly moist, dark reddish brown, slightly cracked, DENSE/STIFF, clayey SAND to sandy CLAY		untered
0.6- 0.7- 0.8- 0.9-		VERY SOFT ROCK SHALE Light grey, highly weathered, fine-grained, very highly fractured, very soft rock grading into soft rock towards base of test pit		Not encountered
1.0- 1.1- 1.2- 1.3- 1.4-				
1.5				
1.6-				
1.7-				
1.8-				
1.9- 2.0-				
2.1				
2.2-				
2.3-				
2.4-				
2.5-				
2.6-				
2.7-				
2.8-				
2.9-				
3.0- 3.1-				

Excavation method: Test pit with Terex 820 TLB General remarks 1: Refuse on very soft rock or harder

Groundwater conditions: *Not encountered* General remarks 2: *shale/mudstone*

Base of test pit: 1.5m - refusal reached General remarks 3:

APPENDIX B LABORATORY TEST RESULTS

(EDMS) BEPERK GEOTEGNIESE DIENSTE (PTY) LIMITED GEOTECHNICAL SERVIC GEOTECHNICAL SERVICES TRADING

1231 KIMBERLEY, 8300, SOUTH AFRICA, 3 Roper Street, Kimberley North, KIMBERLEY, 8301 2 +27 (0) 53 832 2472. • 079 533 0544, t +27 (0) 53 832 2472. • simkby@simlab.co zo

***PAGE CONTINUES FROM PAGE 1

DOCUMENT No. 09/0729-09/0728

CLIENT &	PROJECT			SOUTHERN GEOTECHI	NICAL ENGINEERING / LEF	ATO PARK PHASE 1
IOLE No	o / KM			1-48		
ATERIAL DEPTH (mm)				1000 - 2500		
AMPLE	/ LAB. No.			09/0729		
	М	ATERIAL DESCRIPT	101	1-48 1 0-2 5		
N SITU P	IELD MOIS	TURE (%)		8.0%		
ASHTO	CLASSIFIC	CATION		A-2-6		
INIFIED	SOIL CLAS	SIFICATION		sc		
RH147	COLTO CL	ASSIFICATION		G6		
		SIEVE ANALYS	SIS, PERCENTAGE OF	MATERIAL PASSING 0.075M	IM SIEVE (TMH 1, Method A	1 (a), A5 - % PASSING
		63.0 mm		99		
	_	53.0 mm		98		
		37.5 mm		96		
SIS		26.5 mm		93		
SIEVE ANALYSIS		19.0 mm		90		
NA		13.2 mm		87		
J. J.		4.75 mm		66		
SIE		2.00 mm		45		
	0.425 mm		29			
	0.425 mm 0.075 mm		16			
	0.002 mm		1			
α		COARSE SAND		36		
SOIL		FINE SAND		28		
SOIL				1		
-		MATERIAL <0.0		36		
_	_	GRADING MODUL		2.10		
		Ph / CONDUCTIVI		TOO I INSTERNATION OF COMME		
			T	ERG LIMITS ANALYSIS (TMH	1, MELROO AZ, AS & A4)	
mm) >0.		PASSING SIEVE	LL	35		
		CONTENES OF THE CONTENES OF TH	PAILS	13 / 6 18		
OTENTI		SIVENESS (mm)	THE ANID ADVIDAGE AND	ACTURE CONTENT ON FOR	NIA CEARING BATIC ANAL	SCOR STREET & AREAD - A A T D A O
						YSIS (TMH 1, Method A7 & A8)
1	UNICO				JF 3 I ABILIŞED MATERIAL	(TMH 1, Method A13T, A14 & A15T)
Z	0	MAX DRY DENSIT		1691		
OTI	工	OPT MOISTURE (*	-	19.5		
Ž.	AA	COMP MOISTURE		19.3		
N. C.	MOD AASHTO	DRY DENSITY (kg		1690		
ET	2	CBR (%) / *UCS/IT	S (Kpa)	37.91		
TS.		SWELL (%)	. 3.	0.1		
ITS	N N N	DRY DENSITY (kg		1629		
S	4.	CBR (%) / *UCS/IT		32.55		
ucs,	. 1	MAX DRY DENSIT		1570		
aR / UCS /	S &	OPT MOISTURE (%)				
CBR / UCS / ITS DETERMINATION	PROC	CBR (%)		28.62		
	PROC.					
	PROC	100%		38		
	PROC	100% 98%		35		
	PROC	100% 98% 95%		35 31		
CBR/UCS/ITS CBR/UCS/	PROC	100% 98%		35		

(EDMS) BEPERK GEOTEGNIESE DIENSTE

AS

(PTY) LIMITED GEOTECHNICAL SERVICES AS

AS

***PAGE CONTINUES FROM PAGE 1

DOCUMENT No. 09/0716-09/0719

CLIENT &	PROJECT			SOUTHERN GEOTEC	HNICAL ENGINEERING /	LERATO PARK PHASE 1	
HOLE NO	.E No / KM			1-1	1-6	1-11	1-13
MATERIAL DEPTH (mm)				300-900	500-1600	1100-2800	1000-1800
SAMPLE	LAB. No.			09/0716	09/0717	09/0718	09/0719
	M	ATERIAL DESCRIPT	TION	1-1 0 3-0.9	1-6 0.5-1.6	1-11 1 1 - 2.8	1-13 1 0-1.8
N SITU FI	ELD MOIS	TURE (%)		5.2%	1.7%	5.9%	5.1%
ASHTO	CLASSIFIC	ATION		A-2-6	A-2-6	A-2-6	A-2-6
JNIFIED S	OIL CLAS	SIFICATION		sc	sc	sc	sp/sc
TRH14/1 C	OLTO CLA	ASSIFICATION		G6	G6	<g10< td=""><td>G10</td></g10<>	G10
		SIEVE ANALY	SIS, PERCENTAGE O	F MATERIAL PASSING 0.07	SMM SIEVE ITMH 1, Metho	d A1 (a), A5 - % PASSING	
		63.0 mm		100			
		53.0 mm		97	100		100
		37.5 mm		96	98		97
SIS		26.5 mm		94	96	100	93
SIEVE ANALYSIS		19.0 mm		91	94	99	8.8
Z		13.2 mm		75	86	97	78
EVE		4.75 mm		56	74	82	54
Sig		2.00 mm		42	56	63	35
		0.425 mm		26	33	39	21
		0.075 mm		16	19	22	8
-		0.002 mm	1	1	2	2	1
E L		COARSE SAND		37	41	38	39
SOIL		FINE SAND		24	26	27	38
M		MATERIAL <0.075 MM		40	33	35	23
		GRADING MODUL	.US (GM)	2 15	1.92	1.77	2 15
		Ph / CONDUCTIV	ITY Sm				
			ATTERB	ERG LIMITS ANALYSIS (TM	H 1 Method A2, A3 & A41		
ATTERBE	R LIMITS	PASSING SIEVE	L.L	34	33	37	37
mm) >0.4	25		P.I. / L.S	13 + 8.7	11 - 3 36	16 / 9.19	16 / 8.1
POTENTIA	AL EXPAN	SIVENESS (mm)					
	MA	XIMUM DRY DENSI	TY AND OPTIMUM MO	DISTURE CONTENT, CALIFO	RNIA BEARING RATIO AL	NALYSIS (TMH 1, Method A	7 & A31
	UNCOH	IFINED COMPRESS	IVE STRENGTH & IND	RECT TENSILE STRENGT	OF STABILISED MATER	AL (TMH 1, Method A13T,	A14 & A16T)
-		MAX DRY DENSIT	ry (kg/m³)	1864	1733	1917	1888
S S	TO	OPT MOISTURE (%)		14.3	16.1	13.4	13.8
A	ASI	COMP MOISTURE	(%)	14	16.4	13.5	13 9
RMI	MOD AASHTO	DRY DENSITY (kg	//m³)	1845	1702	1925	1990
CBR / UCS / ITS DETERMINATIO	₹	CBR (%) / "UCS/IT	(Kpa)	41.98	69.69	4.31	10.95
S		SWELL (%)		0.1	0.0	0.9	0.4
7.11	NRB	DRY DENSITY (kg		1793	1649	1848	1927
ncs	Z	CBR (%) / *UCS/IT		33	6B 5B	3,08	10.44
œ.	ن ۾	MAX DRY DENSIT	TY (kg/m²)	1649	1586	1712	1840
CB	PROC.	OPT MOISTURE (%)				
	1	CBR (%)		18.88	41 91	2.13	7 63
57		100%		45	70	4	10
-		98%		39	70	4	8
95%		95%		31	67	3	6
1008		93%		27	53	3	5
CBR/UCS/ITS		90%		22	31	2	3

(EDMS) BEPERK GEOTEGNIESE DIENSTE

(PTY) LIMITED GEOTECHNICAL SERVICES TRADING AS

MANOEL DRYWEND AS TRADING AS TRADING AS

"SAASIL/SAACEL No 201

1231, KIMBERLEY, 8300, SOUTH AFRICA, 3 Roper Street, Kimberley, North, KIMBERLEY, 8301 27 (0) 53 832 2472.

4 079 533 0544, t +27 (0) 53 832 2472.

√ simkby@simlab co zu

""PAGE	CONTINUES	FROM	PAGE	1
--------	-----------	------	------	---

DOCUMENT No.: 09/0731-09/0734

CLIENT & PROJE	CT		SOUTHERN GEOTEC	HNICAL ENGINEERING	LERATO PARK PHASE 1	r-
HOLE No. / KM			1.2	1.3	1-5	1.7
MATERIAL DEPTH (mm)			1000	400	500	500
SAMPLE / LAB. N	Q.		09/0731	09/0732	09/0733	0910734
	MATERIAL DESCRIPT	TON	1.2 1.0	1-2 0.4	1-5 0.5	1-7 0.5
N SITU FIELD MO	DISTURE (%)		9 9%	7 8%	12.5%	7.6%
AASHTO CLASSE	FICATION		A-7-6	A-6	A-6	A-6
JNIFIED SOIL CL	ASSIFICATION		sc	SC	SC	sc
RH14: COLTO	CLASSIFICATION					
	SIEVE ANALY	SIS, PERCENTAGE OF	MATERIAL PASSING 0.07	5MM SIEVE (TMH 1 Metho	d A1 (a), A5 - % PASSING	
	63.0 mm					
	53.0 mm					
	37.5 mm					
SIS	26.5 mm					
AL.	19.0 mm					
Z	13.2 mm		100	100	100	100
SIEVE ANALYSIS	4.75 mm		95	98	96	99
35	2.00 inm		91	94	92	98
	0.425 mm		72	78	85	94
	0.075 mm	0.075 mm		44	45	41
	0.002 mm	0.002 mm		5	8	6
A A B	COARSE SA	COARSE SAND		17	7	4
SOIL	FINE SAND	FINE SAND		37	44	54
×	MATERIAL < 0.0	MATERIAL < 0.075 MM		46	49	42
	GRADING MODUL	US (GM)	0 91	0 84	0.78	0.91
	Ph / CONDUCTIVI	ITY Sm 1	7.2 / 0 0049	7 64 / 0 0058	7.95 / 0.0054	7.72 / 0.0036
		ATTERBI	RG LIMITS ANALYSIS (TM	H 1, Method A2, A3 & A4)		
The second secon	S PASSING SIEVE	L.L	45	35	38	28
mm) >0.425		P.I. L.S.	18 / 10.71	15 / 9 17	20 / 10.03	14 / 6 23
POTENTIAL EXPA	ANSIVENESS (mm)					
			ISTURE CONTENT, CALIF			
DNC			IRECT TENSILE STRENGT	H OF STABILISED MATERI	AL (TMH 1, Method A13T	A14 & A16T)
Z 0	MAX DRY DENSIT					
NATION	OPT MOISTURE (
AAS		COMP MOISTURE (%)				
MOD A	DRY DENSITY (kg					
THE SE	CBR (%) / "UCS/IT	5 (Kpa)				
15.	SWELL (%)	·3,				
NRB	DRY DENSITY (kg		_			
2	MAX DRY DENSIT					
	ORT WOISTLINE					
S S S	OPT MOISTURE (70)				
CBR / UCS / ITS DETERMINATION PROC. NRB MOD AASHTO	[CBX (%)					
<u>.</u>	400%	100%				-
<u>.</u>						
	98%					
CBR / UCS / ITS CBR / PROC						

1231, KIMBERLEY, 8300, SOUTH AFRICA. 3 Roper Street, Kimberley North, KIMBERLEY, 8301 ★ +27 (0) 53 632 2472 • 079 533 0544, € +27 (0) 53 832 2472 € simkby@simlab collaboration.

"PAGE CONTINUES FROM PAGE 1

DOCUMENT No.: 09/0735-09/0739

The second secon	CT:		SOUTHERN GEOTEC	HNICAL ENGINEERING	LERATO PARK PHASE 1	
OLE No. / KM			1-8	1-B	1.11	1-12
MATERIAL DEPTH (mm)			600	1200	500	500
AMPLE / LAB. No.			09/0735	09/0736	09/0737	09/0739
	MATERIAL DESCRIPTION	NC	1-8 0.6	1-8 1.2	1-11 0.5	1-12 0.6
N SITU FIELD MO	ISTURE (%)		11.5%	34 3%	12 2%	14.2%
ASHTO CLASSIF	ICATION		A-6	A-6	A-7-6	A-7-6
INIFIED SOIL CLA	ASSIFICATION		CL	SC	sc	CL
RH14/ COLTO C	LASSIFICATION		- 994			
	SIEVE ANALYS	IS, PERCENTAGE OF	MATERIAL PASSING 0.07	MM SIEVE (TMH 1, Metho	d A1 (a), A5 - % PASSING	
	63 0 mm					
	53.0 mm					
	37.5 mm					
SIS	26.5 mm					
SIEVE ANALYSIS	19.0 mm					
N	13.2 mm			100	100	
VE.	4.75 mm		100	99	98	100
SIE	2.00 mm		99	96	96	99
	0.425 mm		96	87	77	79
	0.075 mm		53	41	38	55
	0.002 mm		7	5	7	6
AR	COARSE SAND		4	9	20	20
SOIL	FINE SAND		43	48	41	25
W	MATERIAL <0.075 MM		53	43	39	55
	GRADING MODULU	IS (GM)	0.52	0.76	0.89	0.52
	Ph CONDUCTIVIT	Y Sm ⁻¹	7 73 / 0.0057	8.17 / 0 0035	8 22 / 0 0045	8 31 / 0 005
		ATTERBE	RG LIMITS ANALYSIS (TM	1 1. Method A2, A3 & A4)		
TTERBER LIMIT	S PASSING SIEVE	L.L	38	38	42	46
	S PASSING SIEVE	P.I. / L.S.	38 18 / 10.17	38 18 / 8.7	20 / 10.91	46 22 / 12.21
mm) >0.425	S PASSING SIEVE					
nm) >0.425 OTENTIAL EXPA	NSIVENESS (mm)	P.I. / L.S.		18 / 8.7	20 / 10.91	22 / 12.21
mm) >0.425 POTENTIAL EXPA	NSIVENESS (mm) MAXIMUM DRY DENSIT	P.I. / L.S. Y AND OPTIMUM MO	18 / 10.17	18 8.7 RNIA BEARING RATIO AN	20 / 10.91 IALYSIS (TMH 1, Method A	22 / 12.21 7 & A8]
nm) >0.425 OTENTIAL EXPA UNC	NSIVENESS (mm) MAXIMUM DRY DENSIT	P.I. / L.S. Y AND OPTIMUM MO YE STRENGTH & INDI	18 / 10.17	18 8.7 RNIA BEARING RATIO AN	20 / 10.91 IALYSIS (TMH 1, Method A	22 / 12.21 7 & A8)
nm) >0.425 OTENTIAL EXPA UNC	MAXIMUM DRY DENSIT ONFINED COMPRESSIV MAX DRY DENSITY OPT MOISTURE (%	P.I. / L.S. Y AND OPTIMUM MO /E STRENGTH & INDI (kg/m²)	18 / 10.17	18 8.7 RNIA BEARING RATIO AN	20 / 10.91 IALYSIS (TMH 1, Method A	22 / 12.21 7 & A8)
nm) >0.425 OTENTIAL EXPA UNC	MAXIMUM DRY DENSIT ONFINED COMPRESSIV OPT MOISTURE (%	P.I. / L.S. Y AND OPTIMUM MO /E STRENGTH & INDI (kg/m²) %)	18 / 10.17	18 8.7 RNIA BEARING RATIO AN	20 / 10.91 IALYSIS (TMH 1, Method A	22 / 12.21 7 & A8)
nm) >0.425 OTENTIAL EXPA	MAXIMUM DRY DENSIT ONFINED COMPRESSIV MAX DRY DENSITY OPT MOISTURE (% COMP MOISTURE (DRY DENSITY (kg/r	P.I. / L.S. Y AND OPTIMUM MO /E STRENGTH & INDI ((kg/m²)) (%)	18 / 10.17	18 8.7 RNIA BEARING RATIO AN	20 / 10.91 IALYSIS (TMH 1, Method A	22 / 12.21 7 & A8)
nm) >0.425 OTENTIAL EXPA	MAXIMUM DRY DENSIT ONFINED COMPRESSIV MAX DRY DENSITY OPT MOISTURE (COMP MOISTURE (DRY DENSITY (kg/r CBR (%) / 'UCS/ITS	P.I. / L.S. Y AND OPTIMUM MO /E STRENGTH & INDI ((kg/m²)) (%)	18 / 10.17	18 8.7 RNIA BEARING RATIO AN	20 / 10.91 IALYSIS (TMH 1, Method A	22 / 12.21 7 & A8)
mm) >0.425 OTENTIAL EXPA	MAXIMUM DRY DENSIT ONFINED COMPRESSIV MAX DRY DENSITY OPT MOISTURE (% COMP MOISTURE (DRY DENSITY (kg/r CBR (%) / *UCS/ITS SWELL (%)	P.I. / L.S. Y AND OPTIMUM MO /E STRENGTH & INDI /(kg/m²)) %) n³) (Kpa)	18 / 10.17	18 8.7 RNIA BEARING RATIO AN	20 / 10.91 IALYSIS (TMH 1, Method A	22 / 12.21 7 & A8)
nm) >0.425 OTENTIAL EXPA	MAXIMUM DRY DENSITY ONFINED COMPRESSIV MAX DRY DENSITY OPT MOISTURE (% COMP MOISTURE (DRY DENSITY (kg/r CBR (%) / *UCS/iTS SWELL (%) DRY DENSITY (kg/r	P.I. / L.S. Y AND OPTIMUM MO (E STRENGTH & INDI (kg/m²)) %) (kg/m²) (Kga)	18 / 10.17	18 8.7 RNIA BEARING RATIO AN	20 / 10.91 IALYSIS (TMH 1, Method A	22 / 12.21 7 & A8)
nm) >0.425 OTENTIAL EXPA UNC	MAXIMUM DRY DENSIT ONFINED COMPRESSIV MAX DRY DENSITY OPT MOISTURE (% COMP MOISTURE (DRY DENSITY (kg/r CBR (%) / *UCS/iTS SWELL (%) DRY DENSITY (kg/r CBR (%) / *UCS/iTS	P.I. / L.S. Y AND OPTIMUM MO /E STRENGTH & INDI (kg/m²)) (%) n³) (Kpa)	18 / 10.17	18 8.7 RNIA BEARING RATIO AN	20 / 10.91 IALYSIS (TMH 1, Method A	22 / 12.21 7 & A8)
UCS / ITS DETERMINATION NRB MOD AASHTO NRB MOD AASHTO	MAXIMUM DRY DENSIT ONFINED COMPRESSIV MAX DRY DENSITY OPT MOISTURE (% COMP MOISTURE (%) CBR (%) / *UCS/ITS SWELL (%) DRY DENSITY (kg/r CBR (%) / *UCS/ITS MAX DRY DENSITY	P.I. / L.S. Y AND OPTIMUM MO /E STRENGTH & INDI (kg/m²)) (%) n³) (Kpa) (Kpa) (Kpa) (kg/m²)	18 / 10.17	18 8.7 RNIA BEARING RATIO AN	20 / 10.91 IALYSIS (TMH 1, Method A	22 / 12.21 7 & A8)
UCS / ITS DETERMINATION NRB MOD AASHTO NRB MOD AASHTO	MAXIMUM DRY DENSITY ONFINED COMPRESSIV MAX DRY DENSITY OPT MOISTURE (% COMP MOISTURE (DRY DENSITY (kg/r CBR (%) / *UCS/iTS SWELL (%) DRY DENSITY (kg/r CBR (%) / *UCS/iTS MAX DRY DENSITY OPT MOISTURE (%)	P.I. / L.S. Y AND OPTIMUM MO /E STRENGTH & INDI (kg/m²)) (%) n³) (Kpa) (Kpa) (Kpa) (kg/m²)	18 / 10.17	18 8.7 RNIA BEARING RATIO AN	20 / 10.91 IALYSIS (TMH 1, Method A	22 / 12.21 7 & A8)
CBR / UCS / ITS DETERMINATION PROC. NRB MOD AASHTO NO NRB TOR NO NA	MAXIMUM DRY DENSIT ONFINED COMPRESSIV MAX DRY DENSITY OPT MOISTURE (% COMP MOISTURE (DRY DENSITY (kg/r CBR (%) / *UCS/ITS SWELL (%) DRY DENSITY (kg/r CBR (%) / *UCS/ITS MAX DRY DENSITY OPT MOISTURE (%) CBR (%)	P.I. / L.S. Y AND OPTIMUM MO /E STRENGTH & INDI (kg/m²)) (%) n³) (Kpa) (Kpa) (Kpa) (kg/m²)	18 / 10.17	18 8.7 RNIA BEARING RATIO AN	20 / 10.91 IALYSIS (TMH 1, Method A	22 / 12.21 7 & A8)
PROC. NRB MOD AASHTO NOT TOR NO AASHTO NOT TOR	MAXIMUM DRY DENSIT ONFINED COMPRESSIV MAX DRY DENSITY OPT MOISTURE (% COMP MOISTURE (DRY DENSITY (kg/n CBR (%) / *UCS/ITS SWELL (%) DRY DENSITY (kg/n CBR (%) / *UCS/ITS MAX DRY DENSITY OPT MOISTURE (% CBR (%)	P.I. / L.S. Y AND OPTIMUM MO /E STRENGTH & INDI (kg/m²)) (%) n³) (Kpa) (Kpa) (Kpa) (kg/m²)	18 / 10.17	18 8.7 RNIA BEARING RATIO AN	20 / 10.91 IALYSIS (TMH 1, Method A	22 / 12.21 7 & A8)
CORP. UCS. / ITS DETERMINATION PROC. NRB MOD AASHTO NO TOR	MAXIMUM DRY DENSITY ONFINED COMPRESSIVA MAX DRY DENSITY OPT MOISTURE (% COMP MOISTURE (% DRY DENSITY (kg/rr CBR (%) / *UCS/ITS SWELL (%) DRY DENSITY (kg/rr CBR (%) / *UCS/ITS MAX DRY DENSITY OPT MOISTURE (% CBR (%) 100% 98%	P.I. / L.S. Y AND OPTIMUM MO /E STRENGTH & INDI (kg/m²)) (%) n³) (Kpa) (Kpa) (Kpa) (kg/m²)	18 / 10.17	18 8.7 RNIA BEARING RATIO AN	20 / 10.91 IALYSIS (TMH 1, Method A	22 / 12.21 7 & A8)
NOB AASHTO NOB NOB AASHTO NOB NOB NOB NOB NOB NOB NOB NOB NOB NO	MAXIMUM DRY DENSIT ONFINED COMPRESSIV MAX DRY DENSITY OPT MOISTURE (% COMP MOISTURE (DRY DENSITY (kg/n CBR (%) / *UCS/ITS SWELL (%) DRY DENSITY (kg/n CBR (%) / *UCS/ITS MAX DRY DENSITY OPT MOISTURE (% CBR (%)	P.I. / L.S. Y AND OPTIMUM MO /E STRENGTH & INDI (kg/m²)) (%) n³) (Kpa) (Kpa) (Kpa) (kg/m²)	18 / 10.17	18 8.7 RNIA BEARING RATIO AN	20 / 10.91 IALYSIS (TMH 1, Method A	22 / 12.21 7 & A8]

(EDMS) BEPERK GEOTEGNIESE DIENSTE GEOTECHNICAL SERVICES TRADING

231. KIMBERLEY, 8300. SOUTH AFRICA, 3 Roper Street, Kimberley North, KIMBERLEY, 830: 1 +27 (0) 53 832 2472. • 079 533 0544. ↓ +27 (0) 53 832 2472. ℯ- simkby@umlab.co.za

"PAGE CONTINUES FROM PAGE 1

DOCUMENT No 09/0720-09/0724

Page 2 of

LIENT & PROJ	ECT:	1	SOUTHERN GEOTEC	HNICAL ENGINEERING	LERATO PARK PHASE 1	
OLE No. (KM		8.	1-14	1-19	1-26	1-33
MATERIAL DEPTH (mm)			1000-1800	200-600	500-1100	400-1000
SAMPLE LAB No.			09/0720	09:0721	09/0723	09/0724
	MATERIAL DESCRIPT	TION	1.14 1.0-1 8	1-19 02-06	1-26 0 5-1 1	1-33 0.4-1.0
N SITU FIELD N	OISTURE (%)		3.9%	6.8%	1.4%	8.1%
ASHTO CLASS	IFICATION		A-2-7	A-2-6	A-2-4	A-2-4
NIFIED SOIL C	LASSIFICATION	-	sc	sc	sp/sc	sc
RH14/ COLTO	CLASSIFICATION	- '	G8	G8	G5	G6
	SIEVE ANALY	SIS. PERCENTAGE OF	MATERIAL PASSING 0.07	SMM SIEVE (TMH 1, Metho	d A1 (a), A5 - % PASSING	
	63.0 mm			93	100	100
	53.0 mm		100	92	99	95
	37.5 mm		99	87	98	89
SIS	26.5 mm		96	84	94	88
SIEVE ANALYSIS	19.0 mm		90	80	89	84
ANA	13.2 mm		80	69	82	75
VE	4.75 mm		63	61	60	60
SIE	2.00 mm		47	47	43	46
	0.425 mm	0.425 mm		29	23	24
	0.075 nim	0.075 nim		16	10	16
	0.002 mm	0.002 mm		1	1	1
Œ	COARSE SA	COARSE SAND		38	46	49
NORTAR	FINE SAN	FINE SAND		27	30	18
M	MATERIAL <0.0	MATERIAL <0.075 MM		34	24	34
	GRADING MODUL	US (GM)	1.97	2.08	2.23	1.97
	Ph / CONDUCTIV	ITY Sm '				
		ATTERBE	RG LIMITS ANALYSIS ITM	H 1, Method A2 A3 & A4)		
TTERBER LIM	TS PASSING SIEVE	LL	51	40	26	29
nm) >0.425		PILS	25 / 9.7	18 6 68	10 / 3.97	10 / 2.94
OTENTIAL EX	PANSIVENESS (mm)					
	MAXIMUM DRY DENSI	TY AND OPTIMUM MO	STURE CONTENT, CALIFO	ORNIA BEARING RATIO AN	IALYSIS (TMH 1, Method A	7 & A8)
UN	CONFINED COMPRESS	IVE STRENGTH & IND	RECT TENSILE STRENGTI	OF STABILISED MATERI	AL (TMH 1, Method A13T,	A14 & A16T)
	MAX DRY DENSIT	ΓΥ (kg/m³)	1906	1836	2223	2084
NOT OF	OPT MOISTURE (%)	13.3	15.1	8	10 8
NAT ASE	COMP MOISTURE	E (%)	13.1	15 4	7.8	10.5
CBR / UCS / ITS DETERMINATION	DRY DENSITY (kg	DRY DENSITY (kg/m²)		1839	2224	2084
E1E	CBR (%) / *UCS/IT	rs (Kpa)	34 44	40.29	93.59	64.94
O S	SWELL (%)		0.3	0.8	0.0	0.0
NRB NRB	DRY DENSITY (kg	g/m³)	1822	1779	2111	1980
SCS	CBR (%) / *UCS//1	rs (Kpa)	28.53	35.42	89.12	40
2 0.	MAX DRY DENSIT	TY (kg/m ¹)	1667	1709	2045	1917
CBR /	OPT MOISTURE (%)				
<u> </u>	CBR (%)		8.02	35 02	46.25	23.19
TIS	100%		42	40	94	65
S	98%		36	37	92	57
4.3	95%		27	35	89	40
2				25	C4	29
CBR / UCS / ITS	93%		14	35 35	61	12

This report will not be reproduced, exept in full with written permission from SIMLAB

(EDMS) BEPERK GEOTEGNIESE DIENSTE

(PTY) LIMITED GEOTECHNICAL SERVICES TRADING
AS

TRADING AS

1231 K(MBERLEY, 8300, SOUTH AFRICA, 3 Roper Street, Kimberiey North KiMBERLEY 830)

2 +27 (0) 53 832 2472. € 079 533 0544, † +27 (0) 53 832 2472. ← simkby@simlab co 23

***PAGE CONTINUES FROM PAGE 1

DOCUMENT No.: 09/0725-09/0728

CLIENT & PROJECT:			HNICAL ENGINEERING				
				1-35	1.38	1-42	1-44
MATERIAL DEPTH (mm)			500-2700	400-1100	0-1200	400-1300	
SAMPLE / L	AB. No.			09/0725	09/0726	09/0727	09/0728
	M	ATERIAL DESCRIPTI	ON	1-35 0.5-2.7	1-38 0.4-1.1	1-42 0-1.2	1-44 0.4-1 3
N SITU FIE	LD MOIS	TURE (%)		11.2%	4.8%	8.2%	2.6%
ASHTO CL	ASSIFIC	ATION		A-2-6	A-2-6	A-2-6	A-2-4
JNIFIED SO	IL CLAS	SIFICATION		sp/sc	sc	sc	sc
FRH14/* CO	LTO CLA	SSIFICATION		G6	G6	G6	G5
		ŞIEVE ANALYS	IS, PERCENTAGE O	F MATERIAL PASSING 0.07	MM SIEVE (TMH 1, Metho	d A1 (a), A5 - % PASSING	
		63.0 mm		100	99	99	100
		53.0 mm		95	98	97	100
		37.5 mm		91	95	95	97
SIS		26 5 mm		89	92	92	93
SIEVE ANALYSIS		19.0 mm		84	89	88	91
Z		13.2 mm		72	77	77	86
I VE		4 75 mm		55	61	68	79
SE		2.00 mm		39	51	52	66
		0.425 mm		24	35	29	35
		0.075 mm		12	17	17	17
		0 002 mm		1	2	1	2
A L		COARSE SAND		38	31	45	46
SOIL		FINE SAND		32	35	22	28
×		MATERIAL < 0.07	MATERIAL < 0.075 MM		35	33	26
		GRADING MODUL	US (GM)	2.25	1.97	2.02	2.25
		Ph / CONDUCTIVI	TY Sm ⁻¹				
			ATTERB	ERG LIMITS ANALYSIS (TM	1 1, Method AZ, A3 & A4)		
ATTERBER	LIMITS F	PASSING SIEVE	L.L	40	35	38	27
mm) >0.42	5		PILS	16 ! 6 7	14 / 4.81	13 / 4.55	10 / 4.31
POTENTIAL	EXPAN	SIVENESS (mm)					
	MA	XIMUM DRY DENSIT	Y AND OPTIMUM MO	DISTURE CONTENT, CALIFO	RNIA BEARING RATIO AN	IALYSIS (TMH 1, Method)	47 & A8)
	UNCON	IFINED COMPRESSI	VE STRENGTH & INC	RECT TENSILE STRENGTH	OF STABILISED MATERI	AL (TMH 1, Method A13T,	A14 & A16T)
_		MAX DRY DENSIT	Y (kg/m³)	1721	1850	1745	2116
TION	HTO	OPT MOISTURE (%	(v)	19.1	16.2	16.8	9.1
N. N.	AS	COMP MOISTURE		19	16.5	16.7	9.0
CBR / UCS / ITS DETERMINATION	MOD AASHTO	DRY DENSITY (kg/		1717	1851	1726	2128
ETE	M	CBR (%) / *UCS/IT:	S (Kpa)	31 32	64.95	49.3	86.14
SD		SWELL (%)		0.1	0.1	0.9	0.0
11/2	S S S S S S S S S S S S S S S S S S S	DRY DENSITY (kg/		1680	1780	1684	2072
ncs	Ž	CBR (%) / *UCS/IT		33.47	59.34	41.39	70.03
R.	S M	MAX DRY DENSIT		1557	1743	1554	2026
CB	PROC.	OPT MOISTURE (%	/o)				
		CBR (%)		27.4	54.47	13 25	64 02
ITS		100%		31	65	53	83
CBR/UCS/ITS		98%		33	62	46	70
ž.		95%		31	56	36	62
		93%		30	52	28 17	56 48
88		90%					

(EDMS) BEPERK GEOTEGNIESE DIENSTE

(PTY) LIMITED GEOTECHNICAL SERVICES TRADING
AS

PRADING AS CIMATED

SAASIL/SAACEL No. 208

1231, KIMBERLEY, 8300, SOUTH AFRICA, 3 Roper Street, Kimberley North, KIMBERLEY, 8301 * -27 (0) 53 832 2472 • 079 533 0544, t +27 (0) 53 832 2472, 53 similaby@similab co 25

***PAGE CONTINUES FROM PAGE 1

DOCUMENT No .:

09/0740-09/0743

CLIENT & PR					HNICAL ENGINEERING / I		
OLE No. ! KM				1-16	1-22	1-29	1-34
MATERIAL DEPTH (mm)				700	600	600	1000
AMPLE LA	B. No.			09/0740	09/0741	09/0742	09/0743
	MAT	ERIAL DESCRIPT	ION	1-16 0.7	1-22 0.6	1-29 0.6	1-34 1.0
N SITU FIELD	D MOISTL	IRE (%)		11.4%	9.9%	9.5%	12.6%
ASHTO CLA	ASSIFICA	rion		A-7-6	A-7-6	A-6	A-7-6
JNIFIED SON	L CLASSI	FICATION		sc	ML	sc	sc
rrhian col	TO CLAS	SIFICATION					
		SIEVE ANALYS	SIS, PERCENTAGE O	MATERIAL PASSING 0.07	SMM SIEVE (TMH 1, Metho	1 A1 (a). A5 - % PASSING	
		63.0 mm					
		53.0 mm					
		37.5 mm					
Sis		26.5 mm					
SIEVE ANALYSIS		19.0 mm			100		100
AN		13.2 mm		100	99	100	99
NE VE		4.75 mm		99	97	99	97
S		2.00 mm		98	90	94	91
		0.425 mm		81	74	77	63
		0.075 mm		49	54	46	45
		0.002 mm		7	6	7	5
A A		COARSE SAND		17	17	18	31
SOIL		FINE SAND		33	23	33	20
×		MATERIAL <0.075 MM		50	60	49	49
		GRADING MODUL	US (GM)	0.73	0.82	0.83	0.73
		Ph / CONDUCTIVI	TY Sm-1	8.43 / 0 0084	7 82 / 0 0071	8.4 / 0.0032	8.46 / D.0208
			ATTERBI	ERG LIMITS ANALYSIS (TM	1 1, Method A2, A3 & A4)		
	IMITS PA	SSING SIEVE	LL	42	48	38	47
mm) >0 425			P.I. + L.S.	19 / 11.06	19 10 37	20 / 9.05	26 - 11 4
POTENTIAL	EXPANSI	/ENESS (mm)					
	MAX	MUM DRY DENSIT	TY AND OPTIMUM MO	DISTURE CONTENT, CALIFO	IRNIA BEARING RATIO AN	ALYSIS (TMH 1 Method /	47 & A81
	UNCONF	NED COMPRESSI	VE STRENGTH & INC	RECT TENSILE STRENGTH	OF STABILISED MATERI	AL (TMH 1, Method A13T,	A14 & A16T)
z		MAX DRY DENSIT	Y (kg/m²)				
TOT	HTC	OPT MOISTURE (
A Z	AAS	COMP MOISTURE (%)					
R	<u> </u>	DRY DENSITY (kg					
Ē		CBR (%) / 'UCS/IT	S (Kpa)				
250		SWELL (%)					
8/11	<u>ac</u>	DRY DENSITY (kg.					
CBR) UCS / ITS DETERMINATIO		CBR (%) / "UCS/IT					
SR.	% C	MAX DRY DENSIT					
Ö	2	OPT MOISTURE (/0)	-			
		CBR (%)					
5 100%		*****					
2		98%					
CSUITS	95%						
CBR / UCS / ITS		95%					

(EDMS) BEPERK GEOTEGNIESE DIENSTE
(PTY) LIMITED GEOTECHNICAL SERVICES AS

TRADING AS CIMATERO

1231, KIMBERLEY 8300, SOUTH AFRICA, 3 Roper Street, Kimberley North, KIMBERLEY, 830 (
2 +27 (0) 53 832 2472. a 079 533 0544 (+27 (0) 53 832 2472. ... similary@simlab co za

***PAGE CONTINUES FROM PAGE 1

DOCUMENT No.

09/0744-09/0747

CLIENT	PROJECT			SOUTHERN GEDTEC	HNICAL ENGINEERING /	LERATO PARK PHASE 1	
HOLE No. / KM				1.41	1-49	1-50	1-51
MATERIAL DEPTH (mm)				500	1000	800	1000
SAMPLE / LAB. No				09/0744	09/0745	09/0746	09/0747
MATERIAL DESCRIPTION				1-41 0.5	1-49 1.0	1-50 0 8	1-51 1 0
N SITU	FIELD MOIS	STURE (%)		4.9%	15 2%	14.5%	19 0%
ASHTO	CLASSIFIC	CATION		A-2-4	A-7-6	A-6	A-7-6
JNIFIED	SOIL CLAS	SSIFICATION		sm/sc	CL.	CL	СН
(RH14/*	COLTO CL	ASSIFICATION					
		SIEVE ANALYS	SIS, PERCENTAGE O	F MATERIAL PASSING 0.07	SMM SIEVE (TMH 1, Metho	d At (a), A5 - % PASSING	
	63.0 mm						
[53.0 mm						
	37.5 mm						
SiS		26.5 mm					
SIEVE ANALYSIS	19.0 mm		100				
AN		13.2 mm		99	100		
N.	4.75 mm			99	97	100	
SIE		2.00 mm		98	94	99	100
77	0.425 mm			92	78	96	96
		0.075 mm		29	65	57	79
	0.002 mm			5	4	8	9
. W	COARSE SAND		6	17	3	4	
SOIL	FINE SAND		65	14	40	17	
MC	MATERIAL <0.075 MM		29	69	57	80	
	GRADING MODULUS (GM)		0.81	0 62	0.48	0.81	
	Ph / CONDUCTIVITY Sm 1		8.84 / 0.0012	8 14 / 0.0215	8.41 / 0.0091	8 5 0.0289	
			ATTERB	ERG LIMITS ANALYSIS (TM	H 1, Method A2, A3 & A4		
ATTERB	ER LIMITS	PASSING SIEVE	LL	19	46	39	51
mm) >0.425 P.I. / L.S.			P.I. / L.S.	4 / 1.91	23 10 76	22 / 11.63	2B + 12.52
POTENT	IAL EXPAN	(SIVENESS (mm)					
	M	AXIMUM DRY DENSI'I	TY AND OPTIMUM ME	DISTURE CONTENT, CALIFO	ORNIA BEARING RATIO AN	ALYSIS ITMH 1, Method A	7 & A81
	UNCO	NFINED COMPRESSI	VE STRENGTH & INC	PRECT TENSILE STRENGTH	OF STABILISED MATERI	AL (TMH 1, Method A13T, A	414 & A16T)
z		MAX DRY DENSIT	Y (kg/m³i				
2	MOD AASHTO	OPT MOISTURE (%)					
N		COMP MOISTURE (%)					
××××××××××××××××××××××××××××××××××××××		DRY DENSITY (kg/m³)					
Ē1E		CBR (%) / *UCS/ITS (Kpa)					
CBR / UCS / TIS DETERMINATION		SWELL (%)					
	NAB	DRY DENSITY (kg/m³)					
	Z	CBR (%) / "UCS/ITS (Kpa)					
	٠ ١	MAX DRY DENSITY (kg/m³)					
	OPT MOISTURE (%)		/e)				
16	CBR (76)						
10	100%						
ITS.	98%						
CS/ITS		0.001					
/ UCS / ITS		95%					
CBR / UCS / ITS		95% 93% 90%					

SAASIL/SAACEL No. 20

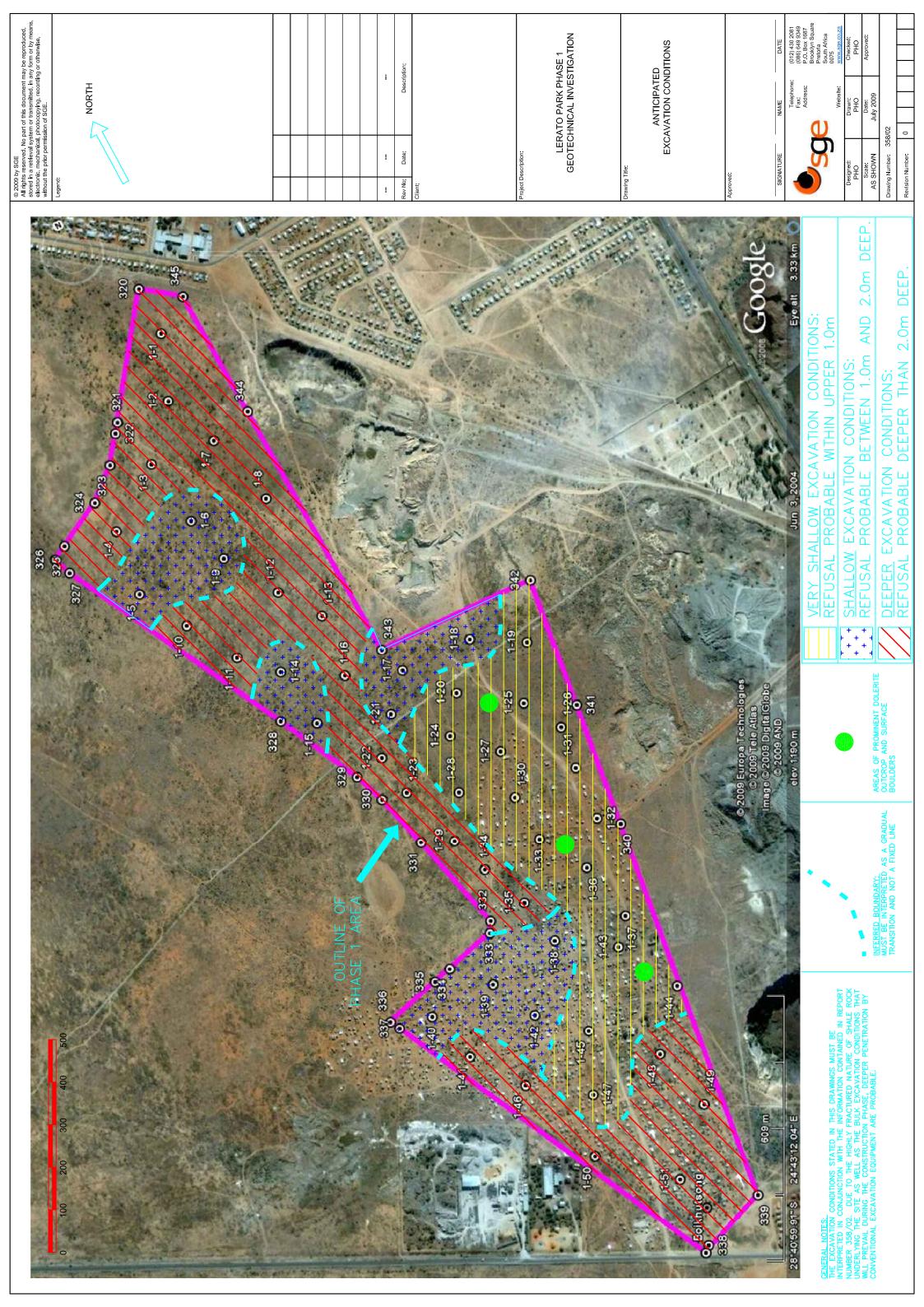
1 * 1" REFILEY, 8300. SOUTH AFRICA, 3 Roper Street, Kimberley North, KIMBERLEY, 8301 (c) 53 832 2472. 4 079 533 0544, 1 +27 (0) 53 832 2472. 4 5 5 inhkby@simlab.co z3

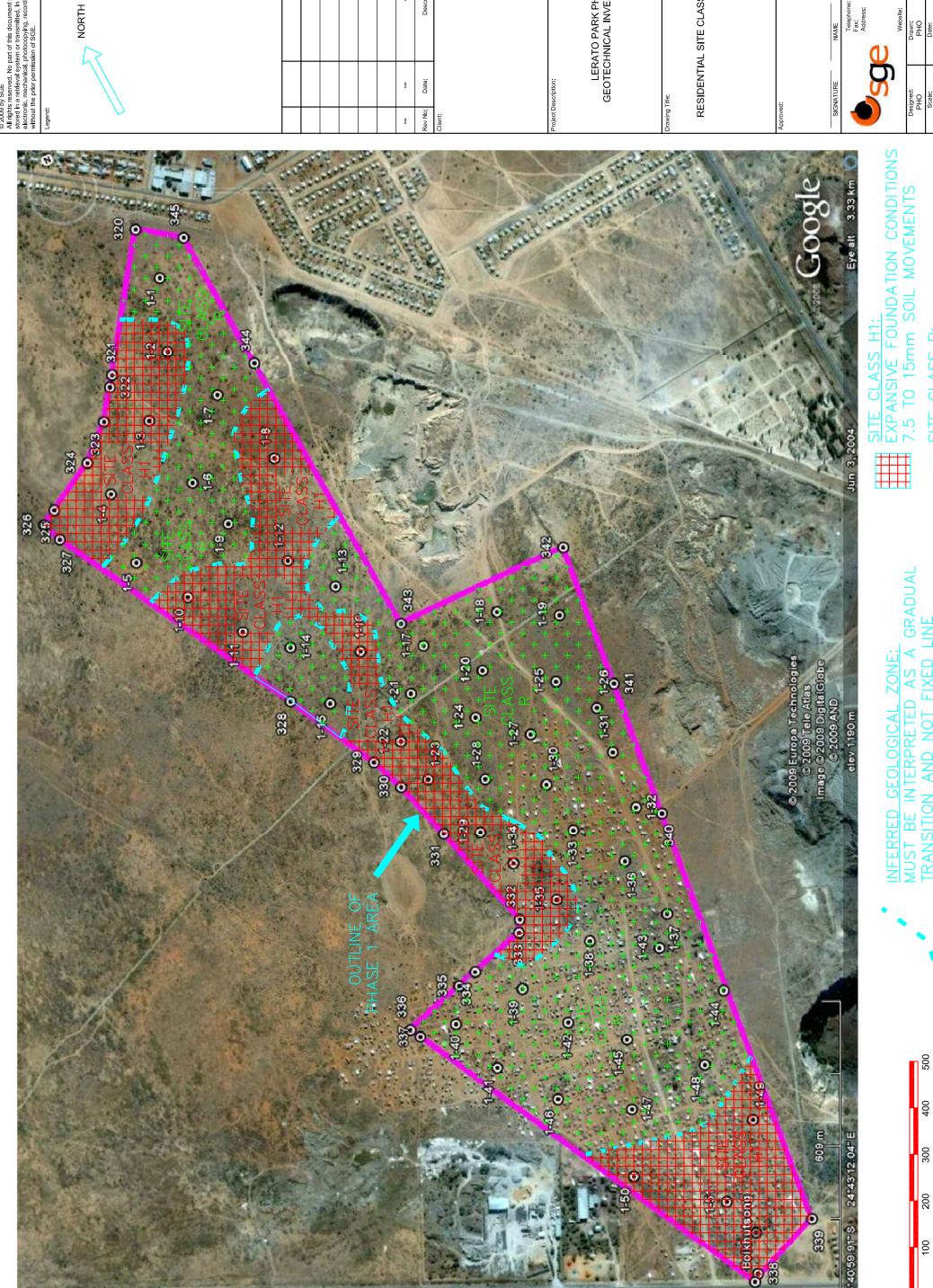

***PAGE CONTINUES FROM PAGE 1

DOCUMENT No. 09

09/0748

PAGE CONTINUE	ES FROM PAGE 1	D	OCUMENT No. 09/07	48	Page 2 of
LIENT & PROJEC	T		SOUTHERN GEDTEC	HNICAL ENGINEERING LE	ERATO PARK PHASE 1
IOLE No. / KM	750		1.52	The state of the s	the balls have been been been been been been been be
ATERIAL DEPTH	(mm)		400		
AMPLE / LAB. No			09/0748	-	
MATERIAL DESCRIPTION			1-52 0.4		
N SITU FIELD MOISTURE (%)			14.4%		
AASHTO CLASSIFICATION			A-7-6	= = = = = = = = = = = = = = = = = = = =	i -
INIFIED SOIL CLAS	SSIFICATION		CL		10
RH14/- COLTO CL	ASSIFICATION				
	SIEVE ANALY	SIS, PERCENTAGE	OF MATERIAL PASSING 0.07	SMM SIEVE (TMH 1, Method	A1 (a), A5 - % PASSING
	63.0 mm				
	53.0 mm				
	37.5 mm				
SIS	26.5 mm				
SIEVE ANALYSIS	19.0 mm		100		
AN	13.2 mm		100		
NE NE	4.75 mm		99		
SiE	2.00 mm		97		
<u> </u>	0.425 mm	1	91		
	0.075 mn	1	62		
	0.002 mm		8		
Œ	COARSE SAND		6		
MORTAR	FINE SAND		31		
S OM	MATERIAL <0 075 MM		64	34	9 -
	GRADING MODUL		0.51		
	Ph / CONDUCTIVITY Sm 1		8.84 / 0.0012		
			BERG LIMITS ANALYSIS (TM)	1 1. Method A2. A3 & A41	
TTERBER LIMITS	PASSING SIEVE	LL	48		
(mm) >0.425 P.I. / L.S.		23 / 12.18			
OTENTIAL EXPAN	SIVENESS (mm)				=
M	AXIMUM DRY DENS	ITY AND OPTIMUM M	IQISTURE CONTENT. CALIFO	RNIA BEARING RATIO ANA	LYSIS (TMH 1, Method A7 & A8)
UNCO	NATINED COMPRESS	IVE STRENGTH & IN	DIRECT TENSILE STRENGTH	OF STABILISED MATERIAL	(TMH 1, Method A13T, A14 & A16T)
	MAX DRY DENSIT	TY (kg/m³)			
10 OT	OPT MOISTURE	%)			
ASE ASE	COMP MOISTURE (%)				
TERMINATION MOD AASHTO	DRY DENSITY (kg	g/m³)			
MO	CBR (%) / *UCS/IT	rs (Kpa)			
GBR / UCS / ITS DETERMINATION PROC. NRB MOD AASHTO	SWELL (%)				
EB EB	DRY DENSITY (kg/m³) CBR (%) / *UCS/ITS (Kpa)				
S	CBR (%) / *UCS/ITS (Kpa)				
n d	MAX DRY DENSITY (kg/m²)				7.0
CBR/	OPT MOISTURE (%)				
4	CBR (%)				72
2	100%				
_	98%				
s L	30 /6				
ncs)	95%				
CBR / UCS / ITS					

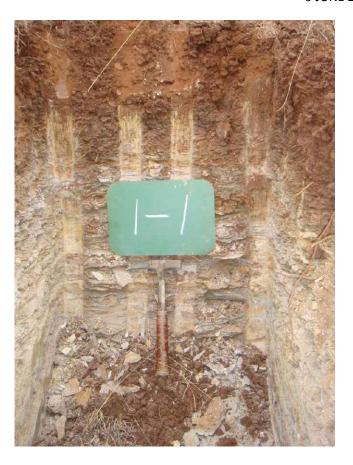

APPENDIX C DRAWINGS

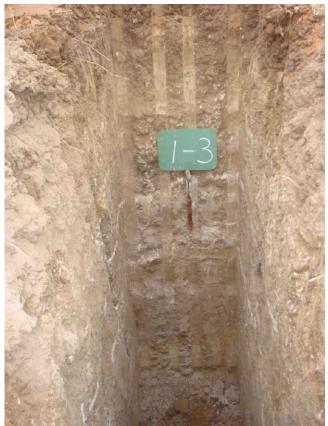


200

100

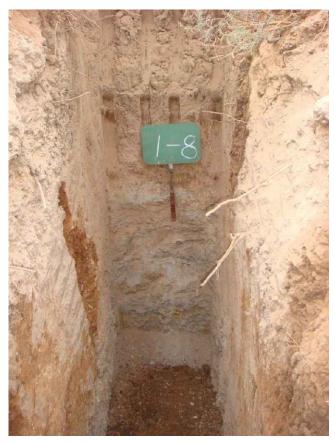
APPROXIMATE TEST PIT POSITIONS LERATO PARK PHASE 1 GEOTECHNICAL INVESTIGATION NORTH



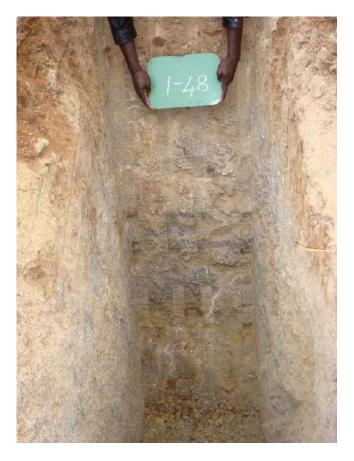

LERATO PARK PHASE 1 GEOTECHNICAL INVESTIGATION RESIDENTIAL SITE CLASS ZONES NORTH Designed: PHO Scale: As shown

TION CONDITIONS MOVEMENTS

APPENDIX D PHOTOGRAPHS






LERATO PARK PHASE 1

10 JUNE 2009

LERATO PARK PHASE 1

10 JUNE 2009

LERATO PARK PHASE 2 Geotechnical investigation report

Southern Geotechnical Engineering
Report Number 358/03
August 2009

TITLE	LERATO PARK PHASE 2 SITUATED WITHIN THE SOL PLAATJE LOCAL MUNICIPALITY Geotechnical Investigation Report
CLIENT	BIGEN AFRICA SERVICES (PTY) LTD P.O. Box 29 The Innovation Hub Persequor 0087
PREPARED BY :	SOUTHERN GEOTECHNICAL ENGINEERING P.O. Box 1687 BROOKLYN SQUARE 0075
DATE	25 August 2009
REFERENCE NUMBER	358/03
PROJECT TEAM	
Fieldwork and reporting:	Pieter Oosthuizen Pr.Eng. Geotechnical Engineer
STATUS	Draft for comment

EXECUTIVE SUMMARY

- 1. Southern Geotechnical Engineering was appointed by Bigen Africa Services (Pty) Ltd, to undertake a geotechnical investigation, for township establishment purposes, of the proposed Lerato Park Phase 2 area which is situated within the Sol Plaatjes Local Municipality area in the Northern Cape Province.
- 2. The Phase 2 area constitutes a surface area of 91.9 hectares which is largely undeveloped.
- 3. The field investigation comprised the excavation of 48 test pits with a TLB-type excavator. All the test pits were entered and profiled by a geotechnical engineer according to current methods and procedures (Brink and Bruin, 1990).
- 4. According to published information the site is underlain by shale of the Prince Albert Formation, Ecca Group, Karoo Supergroup. The shale has been extensively intruded by post Karoo dolerite, especially along the southern portions of the study area.
- 5. The Phase 2 area can be divided into two broad geological zones namely:
 - Areas underlain by shallow, very soft rock shale and minor mudstone and,
 - Areas underlain by shallow, soft rock or harder dolerite rock.
- 6. The majority of the study area is covered by a thin, surface layer of potentially expansive, transported soils. Within areas underlain by very soft rock shale or mudstone at depth, the transported soils are underlain by calcareous, residual shale or mudstone. Calcareous residual shale/mudstone soils are in turn typically underlain by highly weathered, very highly fractured, soft rock or harder shale.
- 7. A relatively small proportion of the study area is underlain by shallow, soft rock or harder dolerite formations.
- 8. No standing groundwater levels or evidence of earlier groundwater levels were encountered within any of the test pit excavations.
- 9. Over the majority of the site relatively 'deep' excavation conditions will be encountered with possible refusal on shale or dolerite rock generally at depths exceeding 2.0m below the existing ground level. Only within relatively minor areas will shallow refusal conditions be encountered on very soft rock shale or soft rock or harder dolerite formations.
- 10. All of the soils tested were rated as LOW in potential expansiveness with associated low plasticity index and liquid limit values. Maximum heave values of around 4.5mm and 14mm were calculated for the transported and calcareous residual soil layers, respectively.

- 11. Very soft rock shale materials recorded 'average' strength and compaction characteristics and where generally rated as G6 to G7 quality. Weathered dolerite recorded 'good' strength and compaction characteristics and were rated as G6 quality.
- 12. The majority of soils tested were rated as not corrosive.
- 13. The entire area was divided into two residential site classes namely:
 - Site class R implying stable foundation conditions with negligibly movements for areas mostly underlain by either very soft rock shale or soft rock dolerite and,
 - Site class H1 implying expansive soils with expected soil movements around 7.5mm to 15mm for areas mostly underlain by calcareous residual soils, residual shale and minor areas of shallow mudstone.
- 14. 'Modified normal' construction procedures are recommended for the Site Class H1 areas, typically consisting of lightly reinforced strip footings, articulation joints at all internal/external doors and openings, light reinforcement in masonry and adequate site drainage and service/plumbing precautions.
- 15. Normal' construction procedures are recommended for Site Class R areas, typically consisting of unreinforced strip or slab-on-the-ground type foundations and aadequate site drainage and service/plumbing precautions.
- 16. The following allowable bearing capacities are recommended :

Upper surface layer of transported soils: <u>NOT</u> to be used as a founding layer.

Calcareous residual shale/mudstone: 100kPa

• Very soft rock shale: 200kPa

• Soft rock or harder dolerite: 650kPa

- 17. It will be required to remove the upper, surface layer of transported soils over the entire footprint areas to be covered by surface beds and fills. Suitable fill material must be placed in thin layers (typically 150mm thick), and each layer compacted to at least 93% Mod. AASHTO at OMC.
- 18. The following generic steps are recommended in the construction of the access roads.
 - Remove all vegetation and the upper, surface layer of transported soils over the entire road footprint area.
 - If rock is exposed, clean the surface and place road layerworks directly onto rockhead. The shale/mudstone rockhead must be covered as soon as possible after exposing to the atmosphere

as this material is prone to 'slaking'. If the base of the undercut excavation is situated within soil, rip the exposed, in-situ subgrade to a minimum depth of 150mm and re-compact to a density of at least 90% Mod AASHTO at a moisture content close to optimum.

- Subsequent layerworks must be placed on a moist (and not dry), compacted soil surface.
- As surfacing it may be considered to use either an asphalt application, concrete slab on stabilised subbase or interlocking paving blocks.
- 19. The following guidelines pertain to possible sources of construction materials that will be encountered on site:
 - Very soft rock mudstone and its weathering products should NOT be used as a construction material.
 - Very soft rock or harder shale formations is deemed potentially suitable for use within lower and upper selected, subgrade layers as well as general fill material.
 - Soft rock or harder dolerite formations are expected to have varied application as a construction material, both within road layerworks as well as fills. The primary problem foreseen with the use of this source is the excavatibility of the material.

Table of contents

	Page	Э					
1.	TERMS OF RERERENCE1						
2.	SOURCES OF INFORMATION1						
3.	SITE DESCRIPTION2						
	3.1. GENERAL SITE LOCALITY2						
4.	METHOD OF INVESTIGATION4						
5.	RESULTS OF THE INVESTIGATION4						
	5.1. PUBLISHED REGIONAL GEOLOGY4						
	5.2. SITE SPECIFIC GEOLOGY						
	5.3. GROUND AND SURFACE WATER CONDITIONS9						
	5.4. EXCAVATION CONDITIONS						
	5.5. LABORATORY TEST RESULTS						
	5.6. COMPACTION AND STRENGTH PROPERTIES15						
	5.7. SOIL CORROSIVITY						
6.	RESIDENTIAL SITE CLASSES 19						
7.	RECOMMENDATIONS21						
	7.1. FOUNDATIONS FOR ONE TO TWO STOREY STRUCTURES21						
	7.2. ALLOWABLE BEARING CAPACITIES22						
	7.3. CONSTRUCTION OF SURFACE BEDS AND FILLS22						
	7.4. PAVEMENT LAYERWORKS						
	7.5. Sources of construction materials24						
8.	REERENCES25						
ΑI	PENDIX A Test pit profiles						
ΑI	PENDIX B Laboratory test results						
ΑI	PENDIX C Drawings						
ΔΙ	PPENDIX D Photographs						

List of figures

Figure 1: General site locality map for the Phases 1 and 2 areas of Lerato Park
Figure 2: Phases 1 and 2 areas of the proposed Lerato Park Development
<u>List of tables</u>
Table 1: Summary of geological conditions across the Phase 2 area
Table 2: Summary of excavation conditions encountered at each test pit
Table 3: Expansiveness parameters within the Phase 2 area
Table 4: Average parameters used in heave calculations (Van der Merwe 1964)14
Table 5: Average parameters used in heave calculations (Weston 1979)
Table 6: Strength and compaction characteristics of near-surface soils in Phase 2 area
Table 7: Soil corrosivity of in-situ soils within the Phase 2 area
Table 8: Expected foundation behaviour and corresponding site classes
Table 9: Residential site classes according to test pit excavations

1. TERMS OF RERERENCE

Southern Geotechnical Engineering c.c. (SGE) was requested by Bigen Africa Services (Pty) Ltd, to submit a cost estimate for a geotechnical investigation of both the proposed Phases 1 and 2 areas of the Lerato Park Integrated Housing Development. The proposed Development is situated within the Sol Plaatjes Local Municipality area, Kimberley, Northern Cape Province. A cost estimate was prepared and submitted to Bigen Africa. Confirmation to proceed with the geotechnical investigation was received from Bigen Africa via a letter of appointment with reference number 7801-21-12, dated 25 May 2009.

The Phase 2 geotechnical investigation, which is the subject of this report, was undertaken for township establishment purposes and in particular aimed at supplying information on the soil conditions in terms of:

- Published and site-specific geology,
- Groundwater conditions.
- General excavation conditions applicable to foundations and buried services,
- Depth to rock (if encountered) and anticipated excavation conditions,
- The potential use of in situ materials available on site as construction materials,
- Assigning residential site classes with proposed foundation systems for each class,
- Any other constraining geological/geotechnical aspects that may influence the proposed development.

The Phase 2 area constitutes a sub-portion of a larger area, the remainder of which is covered under the Lerato Park Phase 1 geotechnical investigation with report number 358/02.

2. SOURCES OF INFORMATION

The following sources of information were consulted during this investigation:

1:250 000 scale geological map, 2824 Kimberley,

- Geotechnical investigation report prepared by SGE (Ref. No. 358/01, dated 6 July 2009)
 "Lerato Park, Kimberley, Fast Track Road construction Geotechnical Investigation".
- Geotechnical investigation report prepared by SGE (Ref. No. 358/02, dated 27 July 2009)
 "Lerato Park Phase 1 situated within the Sol Plaatje Local Municipality Geotechnical Investigation Report".
- Geotechnical investigation report prepared by Simlab (Ref. No. SL/1575 dated Jan. 2006)
 "Sol Plaatjes Municipality Proposed Housing Development on the Remainder or Portion 59 of the Farm Roodepan No. 70 Kimberley Geotechnical Investigation".
- Google Earth images obtained from <u>www.earth.google.com</u>.

3. SITE DESCRIPTION

3.1. General site locality

A general site locality map for both the Phases 1 and 2 areas are given in Figure 1 below. The Phases 1 and 2 areas are situated approximately 8 kilometres north-west of the Kimberley CBD in the Northern Cape Province.

As indicated in Figure 2 below, the Phase 2 area constitutes a surface area of 91.9 hectares. The site is bordered by:

- North: Eagle Street of the Roodepan Township and open fields,
- South: Informal settlement and Barkley road,
- East: Lerato Park Phase 1 area.
- West: Open, undeveloped fields (outside of Lerato Park Development area).

The entire Phase 2 study area is relatively flat with only minor gradients, largely undeveloped and constitutes an open to medium dense distribution of thorny shrubs and grass fields. Some minor encroachment of the informal settlement has occurred along the southernmost extremity of the Phase 2 study area. Apart from a few instances where small, scattered dolerite boulders where observed at surface, no other salient geological features were observed within the Phase 2 area.

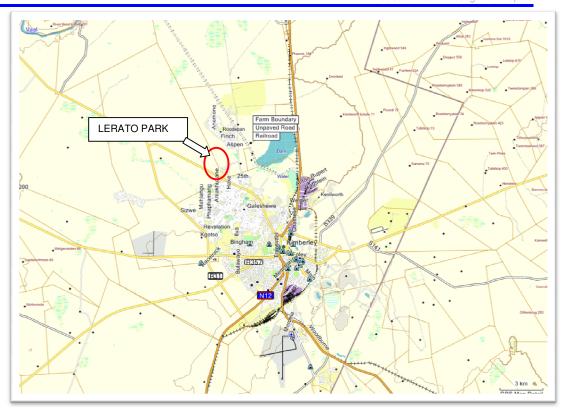


Figure 1: General site locality map for the Phases 1 and 2 areas of Lerato Park



Figure 2: Phases 1 and 2 areas of the proposed Lerato Park Development

4. METHOD OF INVESTIGATION

The field investigation for the Phase 2 area was undertaken on 23 and 24 June 2009. A total of 48 test pits were excavated with a Terex 820 TLB-type excavator. Test pits were numbered 2-1 to 2-48 to distinguish them from test pits excavated within the Phase 1 area (which were numbered 1-1 onwards). Test pits were excavated to the maximum depth reach of the TLB (around 2.6 to 2.8m deep), or until reaching refusal conditions. All the test pits were entered and profiled by a geotechnical engineer according to current methods and procedures (Brink and Bruin, 1990). The detailed soil profiles are included in Appendix A. Test pit positions were determined with a hand-held GPS unit to an accuracy of better than 5m. The approximate test pit positions are indicated in Appendix C.

Representative samples were tested in a commercial soils laboratory for the following:

Soil moisture content (total of 44 samples),

Sieve and hydrometer analysis (total of 44 samples),

Atterberg Limits (total of 44 samples),

Maximum dry density / optimum moisture content (total of 14 samples),

California Bearing Ratio (CBR) test (total of 14 samples),

• pH value (total of 30 samples),

Electrical conductivity (total of 30 samples).

The results of the laboratory testing are included in Appendix B.

5. RESULTS OF THE INVESTIGATION

5.1. Published regional geology

According to the 1:250 000 scale geological map **2824 KIMBERLEY**, the site is underlain by shale of the Prince Albert Formation, Ecca Group, Karoo Supergroup. The shale has been

extensively intruded by post Karoo dolerite, especially along the southern portions of the study area.

The Ecca Group, which follows concordantly on the Dwyka, consist almost exclusively of deepwater, fine-grained clastic sediments and the lithological monotony of the sequence is only interrupted by the characteristic black, carbonaceous shale of the Whitehill Formation which is underlain and overlain respectively by dark-grey mudstone and shale of the Prince Albert and Tierberg Formations (Explanation: Sheet 2824, Kimberley).

The Prince Albert Formation has a maximum thickness of approximately 90m in the general area of Kimberley. The Formation is characterised by weathered outcrops of shale, mostly covered by wind-blown sands. Kleynhans (1979) is of the opinion that the so-called 'shale' is in fact 'mudstone'. At the contact zones with intrusive dolerite formations, the Prince Albert shale is typically altered to a dense, black hornfels or dark blue to black, baked shale. Dolerite occurs widely spread as dykes, sills and funnel-shaped bodies in the area (Explanation: Sheet 2824, Kimberley).

Economically the area is of considerable importance due to the diamonds mined in kimberlite pipes and fissures occurring around Kimberley. In some areas limestones are quarried for the manufacture of cement. Salt is extracted from groundwater in the vicinity of pans. Considerable reserves of gypsum are present in the area (Taken from Explanation: Sheet 2824, Kimberley).

5.2. Site specific geology

The Phase 2 area can be divided into two broad geological zones namely:

- Areas underlain by shallow shale and/or mudstone and,
- Areas underlain by shallow dolerite rock.

5.2.1. Areas underlain by shale and/or mudstone

The following typical soil layers were predominantly encountered within the area underlain by shallow shale/mudstone formations.

5.2.1.1. Transported surface layer (cohesive soils)

The area is covered by a thin (avg. 0.45m; max. 0.8m; min. 0.2m), surface layer of transported soils that were typically described as:

Slightly moist, light to dark brown, FIRM TO STIFF, slightly cracked to cracked, sandy CLAY to clayey SAND.

This particular layer was visually assessed as potentially expansive. The assessment of the potentially expansive nature of this layer was further strengthened by the observation of a cracked soil surface in certain areas. This particular layer was NOT visually assessed as open-structured and hence potentially collapsible.

5.2.1.2. Calcareous residual shale/mudstone

The thin layer of transported soils as described above is mostly underlain (not encountered at all test pits), by a layer that was termed (for the sake of consistency), as a 'calcareous residual shale/mudstone'. The average thickness of this particular layer is around 1.2m (min. 0.5m; max. 2.2m). This particular layer was typically described as:

Dry to slightly moist, light orange brown blotched white and dark grey, MEDIUM DENSE TO DENSE, intact, silty to clayey SAND containing minor 'pockets' of white, fine, calcareous gravel and dark grey, highly to completely weathered, angular shale/mudstone fragments.

This particular layer was not visually assessed as highly expansive and/or collapsible.

5.2.1.3. Residual shale/mudstone

A few test pits were characterised by a deeper weathered profile where the calcareous soils described above are typically underlain by residual shale.

Slightly moist, dark orange blotched grey and white, STIFF, clayey SILT grading into highly fractured, highly weathered, very-fine grained shale.

5.2.1.4. Weathered, very soft rock shale

The *calcareous residual shale/mudstone* or *residual shale* layers described above are typically underlain by highly weathered, very highly fractured, soft rock or harder shale/mudstone. This material was typically described as:

Light to dark grey stained orange along bedding planes, highly weathered, very fine to finegrained, horizontally bedded, very highly fractured, very soft rock shale/mudstone.

Weathered shale rock with a hardness approaching 'very soft rock' (UCS between 700kPa and 3.0MPa), were encountered at an average depth around 0.7m below the existing ground level. The depth to rock however varies considerably from a shallow as 0.2m to as deep as 1.8m.

5.2.2. Areas underlain by shallow dolerite rock

The following typical soil layers were predominantly encountered within the area underlain by shallow dolerite rock formations.

5.2.2.1. Transported surface layer (non cohesive)

The area is covered by a thin (typically 200mm to 300mm thick) surface layer of low-cohesive, transported soils that were typically described as:

Slightly moist, dark reddish brown, MEDIUM DENSE TO DENSE, silty to clayey SAND.

5.2.2.2. Soft rock or harder dolerite

The thin, transported layer described above is underlain by dolerite rock that was typically described as:

Dark grey streaked white, highly to moderately weathered, medium to coarse-grained, massive, moderately fractured, soft rock or harder dolerite rock sometimes interlaced with minor, hard calcrete.

5.2.3. Summary of geological conditions encountered within test pits.

A summary of the geological conditions encountered at every test pit is given in Table 1 below. The information in this Table is used to delineate the site into various geological and geotechnical zones that are eventually related to residential site classes and ultimately recommended foundation layouts for the housing units.

Table 1: Summary of geological conditions across the Phase 2 area

<u>0.9</u> Indicates depth of refusal or near-refusal (defined by very slow rate of excavation).

TP.	DEPTH RANGE ENCOUNTERED (m below existing ground level)								
No.	Transported	Calcareous residual	Residual shale /	Very soft rock	Soft rock or				
	Soils	shale / mudstone	mudstone	shale	harder dolerite				
2-1	0 – 0.3			0.3 – 2.7					
2-2	0 – 0.5	0.5 – 2.7							
2-3	0 – 0.7	0.7 – 1.6	1.6 – 2.7						
2-4	0 – 0.5	0.5 – 1.4	1.4 – 2.7						
2-5	0 – 0.6	0.6 – 1.4	1.4 – 2.7						
2-6	0 – 0.6	0.6 – 1.5	1.5 – 2.7						
2-7	0 – 0.6	0.6 - 1.4	1.4 – 2.7						
2-8	0 – 0.5	0.5 – 1.0	1.0 – 2.7						
2-9	0 – 0.6	0.6 – 1.2	1.2 – 2.7						
2-10	0 – 0.5	0.5 – 1.0		1.0 – <u>2.0</u>					
2-11	0 – 0.6	0.6 – 2.7							
2-12	0 – 0.4				0.4 - <u>0.5</u>				
2-13	0 – 0.2				0.2 - <u>1.2</u>				
2-14	0 – 0.3	0.3 – 1.6	1.6 – 2.7						
2-15	0 – 0.4	0.4 – 1.3	1.3 – 2.7						
2-16	0 – 0.5	0.5 – <u>2.4</u>							
2-17	0 – 0.5	0.5 – <u>2.4</u>							
2-18	0 – 0.5	0.5 – 2.7							
2-19	0 – 0.5	0.5 – 2.7							
2-20	0 – 0.5	0.5 – 1.5	1.5 – 2.7						
2-21	0 – 0.5	0.5 – 1.5	1.5 – 2.7						
2-22	0 – 0.2			0.2 – <u>2.1</u>					
2-23	0 – 0.5	0.5 – 2.0		2.0 – 2.7					
2-24	0 – 0.5			0.5 – <u>1.2</u>					
2-25	0 – 0.2			0.2 – <u>1.1</u>					
2-26	0 – 0.2			0.2 – <u>1.5</u>					
2-27	0-0.8	0.8 – 1.2		1.2 – 2.7					

TP.	DEPTH RANGE ENCOUNTERED (m below existing ground level)									
No.	Transported	Calcareous residual	Residual shale /	Very soft rock	Soft rock or					
	Soils	shale / mudstone	mudstone	shale	harder dolerite					
2-28	0 – 0.3			0.3 – <u>1.6</u>						
2-29	0 – 0.2			1.1 – <u>1.6</u>	0.2 – 1.1					
2-30	0 – 0.25			0.25 – <u>1.0</u>						
2-31	0 – 0.5	0.5 – 1.8		1.8 – 2.6						
2-32	0 – 0.3			0.3 – <u>1.5</u>						
2-33	0 – 0.4			0.4 – <u>1.8</u>						
2-34	0 – 0.3				0.3 - <u>0.4</u>					
2-35	0 – 0.3			0.3 - <u>1.9</u>						
2-36	0 – 0.5	0.5 – 1.5	1.5 – 2.7							
2-37	0 – 0.3				0.3 - <u>0.5</u>					
2-38	0 – 0.3			0.3 - <u>2.2</u>						
2-39	0 – 0.5	0.5 – 1.4		1.4 – 2.7						
2-40	0 – 0.5			0.5 – <u>2.5</u>						
2-41	0 – 0.3				0.3 – <u>0.6</u>					
2-42	0 – 0.6			0.6 – <u>2.5</u>						
2-43	0 – 0.6	0.6 – 1.5	1.5 – 2.6							
2-44	0 – 0.6	0.6 – 1.5	1.5 – 2.6							
2-45	0 – 0.3			0.3 – <u>1.1</u>						
2-46	0 – 0.6	0.6 – 1.2	1.2 – 2.7							
2-47	0 - 0.6	0.6 – 1.2	1.2 – 2.6							
2-48	0 – 0.3				0.3 – <u>0.4</u>					

<u>0.9</u> Indicates premature refusal or near-refusal conditions (as suggested by slow rate of excavation).

5.3. Ground and surface water conditions

No standing groundwater levels were encountered within any of the test pit excavations. It is thus not expected that large volumes of groundwater will be encountered during excavations on this site. The formation of seasonal; (perched), groundwater levels, especially forming after

heavy rainfall events, cannot be excluded completely (although thought to be unlikely).

Accumulation or ponding of precipitation on top of the cohesive, relatively impermeable, surface layer will probably be more of a consideration during the detailed design stage. Possible accumulation and ponding is exacerbated by the very flat gradients within the study area. It is thus recommended that all roads, parking areas and surface beds be elevated slightly above the surrounding ground levels to prevent ponding against these structures. As good construction practice it is also recommended that all structures be protected against rising damp.

5.4. Excavation conditions

Table 2 below summaries the <u>average</u> excavation conditions that were encountered at every test pit excavation. The information contained in Table 2 was plotted graphically to get an overview of the expected, average excavation conditions (see Appendix C). From this figure it can be seen that:

- Deeper excavation conditions (excavated to the maximum reach of the TLB or refusal reached in excess of 2.0m below existing ground level), can generally be expected over the majority of the site. Around two thirds of the test pit excavations falls within this excavation class.
- **Shallow** excavation conditions ('refusal' expected between 1.0m and 2.0m below current ground level), can generally be expected along a central strip of the site. Around 23% of the test pit excavations fall within this excavation class.
- Very shallow excavation conditions ('refusal' expected within the upper 1.0m below current ground level), are only expected in isolated, small areas, mostly underlain by shallow dolerite rock. Around 10% of the test pit excavations fall within this excavation class.

Table 2: Summary of excavation conditions encountered at each test pit

'Very shallow'	<i>'Shallo</i> w'	'Deeper'
excavation	excavation	excavation
conditions ¹	conditions ²	conditions ³
2-12; 2-34; 2-37; 2-41;	2-13; 2-24; 2-25; 2-26;	2-1; 2-2; 2-3; 2-4; 2-5; 2-6; 2-7; 2-8;
2-48	2-28; 2-29; 2-30; 2-32;	2-9; 2-10; 2-11; 2-14; 2-15; 2-16; 2-
	2-33; 2-35; 2-45	17; 2-18; 2-19; 2-20; 2-21; 2-22;
		2-23; 2-27; 2-31; 2-36; 2-38; 2-39;
		2-40; 2-42; 2-43; 2-44; 2-46; 2-47

Notes:

1. **Very shallow** excavation conditions.

'Refusal' expected within upper 1.0m below current ground level.

2. **Shallow** excavation conditions.

'Refusal' expected between 1.0m and 2.0m below current ground level.

3. **Deeper** excavation conditions.

'Refusal' expected in excess of 2.0m below current ground level.

Two important provisos are relevant to the information given in this section namely:

- It must be considered that the excavation of test pits with a TLB is essentially a 'restricted'
 type of excavation and
- The highly fractured and horizontally bedded nature of shale and mudrock formations will
 greatly assist with the excavation effort (even if ripping is required), into these formations.

It can thus generally be expected that open, bulk excavations in areas underlain by shale/mudrock formations will be able to penetrate substantially deeper than the depths indicated in this report. In some areas it may however be required to assist in the excavation effort with more powerful excavation equipment, ripping and/or hydraulic hammering.

In areas underlain by shallow dolerite formations, 'boulder' and 'hard' excavation conditions are expected, probably requiring, in addition to conventional excavation equipment, also ripping, hydraulic hammering and possibly even blasting.

5.5. Laboratory test results

5.5.1. Expansive soil conditions

Table 3 below summarises the relevant engineering properties relating to the potential expansiveness of the various soils tested.

Table 3: Expansiveness parameters within the Phase 2 area

TP NO.	DEPTH (m)	MATERIAL TYPE	PI ¹	LL ²	% PASSING 0.425mm SIEVE	% PASSING 0.002mm SIEVE	HEAVE CLASSIFICATION (After vd Merwe)
2-2	0.5	Transported soils	14	34	91	5	Low
2-2	0.8	Calcareous residual	15	35	85	8	Low
2-3	0.7	Calcareous residual	18	34	92	8	Low
2-4	0.7	Calcareous residual	19	36	84	9	Low
2-5	0.5	Transported soils	21	43	87	9	Low
2-6	2.0	Residual shale	22	47	76	4	Low
2-7	0.5	Transported soils	22	44	95	7	Low
2-8	1.2	Residual shale	20	43	60	5	Low
2-8	2.2	Residual shale	21	44	60	3	Low
2-11	0.6	Calcareous residual	16	35	95	9	Low
2-14	1.0	Calcareous residual	19	44	60	5	Low
2-16	0.3	Transported soils	14	32	99	5	Low
2-16	0.8	Calcareous residual	17	36	83	7	Low
2-18	0.4	Transported soils	15	35	93	7	Low
2-20	0.6	Calcareous residual	15	39	73	5	Low

TP NO.	DEPTH (m)	MATERIAL TYPE	PI ¹	LL ²	% PASSING 0.425mm SIEVE	% PASSING 0.002mm SIEVE	HEAVE CLASSIFICATION (After vd Merwe)
2-21	0.5	Transported soils	18	40	96	7	Low
2-23	0.8	Calcareous residual	20	41	63	6	Low
2-24	0.4	Transported soils	17	35	62	4	Low
2-27	0.7	Transported soils	29	39	75	5	Low
2-27	1.1	Calcareous residual	19	43	60	4	Low
2-31	0.8	Calcareous residual	17	35	91	6	Low
2-36	0.4	Transported soils	14	34	82	4	Low
2-36	1.0	Calcareous residual	19	48	42	3	Low
2-39	0.4	Transported soils	18	40	79	4	Low
2-43	0.6	Calcareous residual	25	49	82	7	Low
2-44	0.6	Transported soils	18	40	90	7	Low
2-46	0.5	Transported soils	20	42	90	7	Low
2-46	1.5	Residual shale	20	46	76	4	Low
2-47	0.5	Transported soils	21	44	90	6	Low
2-47	1.2	Residual shale	23	50	77	6	Low

1 PI = Plasticity index value;

LL = Liquid limit value

From the information contained in the Table above it can be seen all the soil samples tested were rated as **LOW** in heave potential. Plasticity index and liquid limit values are generally low and range from 14 to 29 and 32 to 50, respectively.

2

5.5.1.1. Illustrative heave values based on the Van der Merwe (1964) method

The following 'typical' soil profile is derived from the average layer thicknesses reported in the test pit profiles and are used in the heave calculations:

- 0 0.45m Transported soils,
- 0.45 1.65m Calcareous residual shale/mudstone (average layer thickness 1.2m),
- 1.65m and deeper Very soft rock shale and/or mudstone.

Table 4: Average parameters used in heave calculations (Van der Merwe 1964).

MATERIAL	Average layer	Average	Average %	Average %
	thickness	Plasticity	passing	passing
		index	0.425mm sieve	0.002mm sieve
Transported soils	450mm	19	89	6
Calcareous residual soils	1200mm	18	79	7

Based on the values explained above as well as the Van der Merwe (1964) method, maximum 'theoretical' heave values of 5mm (upper, transported soils) and 8mm (underlying calcareous residual soils), can be calculated for a total, maximum theoretical heave of 13mm.

5.5.1.2. Illustrative heave values based on the Weston (1979) method

Calculated heave values using the Weston method are based on the same typical soil profile as stated in section 5.5.1.1. above. In addition the following average values were used:

Table 5: Average parameters used in heave calculations (Weston 1979).

MATERIAL	Average layer thickness	Average initial moisture content	Average weighted liquid limit	Percentage vertical swell under 60kPa ¹ pressure
Transported soils	450mm	12%	39	1%
Calcareous residual soils	1200mm	13%	40	1.2%

1 60kPa used as 'average' soil pressure exerted by single storey residential structure.

From the Table above the transported and calcareous residual soils are predicted to have vertical swell values of 1% and 1.2% respectively (under 60kPa UDL pressure applied by the structure). Based on the average layer thickness and percentage heave, total heave of around 4.5mm plus 14.4mm = 19mm, is predicted.

5.5.1.3. Illustrative heave values for areas underlain by dolerite

Assuming that foundations will be placed on soft rock or harder dolerite (which will generally be encountered near-surface), negligible foundation movements are expected.

5.5.2. Collapsible and compressible soils

No potential collapsible soils were identified during the field investigation. Potentially collapsible soils are thus not seen as a major geotechnical constraint for the development of the site. It is similarly not expected that any highly compressible soils will be encountered on site.

5.6. Compaction and strength properties

Table 5 below summarises the results of the laboratory testing programme that was undertaken that consisted of California Bearing Ration (CBR), Maximum Dry Density (MDD) / Optimum Moisture Content (OMC) and Foundation Indicator testing.

Table 6: Strength and compaction characteristics of near-surface soils in Phase 2 area

TP NO	SAMPLE DEPTH	MATERIAL TYPE	LL	GM	PI	CBR VALUES AT % MOD AASHTO		COLTO	
110	(m)	1112				93%	95%	98%	
2-1	0.5 – 2.7	Very soft rock shale	44	2.55	17	33	38	45	G7 ¹
2-4	1.4 – 2.7	Residual shale	55	0.79	25	1	1	2	Less than G9
2-6	0.6 – 1.5	Calcareous residual soil	46	0.58	25	1	1	2	Less than G9
2-9	1.5 – 2.6	Residual shale	56	2.55	28	1	2	3	Less than G9
2-13	0.2 – 1.2	Weathered dolerite	33	2.39	14	48	67	109	G6
2-18	0.5 – 1.5	Calcareous residual soil	46	0.66	23	2	3	3	Less than G9
2-22	0.2 – 2.1	Very soft rock shale	52	2.17	22	18	20	26	Less than G9 ²
2-25	0.2 – 1.1	Very soft rock shale	36	2.39	10	28	34	43	G6 ³
2-28	0.3 – 1.6	Very soft rock shale	39	2.52	14	17	20	25	G7
2-31	1.8 – 2.6	Very soft rock shale	52	2.47	17	28	32	38	G7
2-35	0.3 – 1.9	Very soft rock shale	39	2.21	16	19	24	33	G7
2-40	0.5 – 2.5	Very soft rock shale	38	2.52	16	27	41	51	G7⁴
2-45	0.3 – 1.1	Very soft rock shale	36	2.57	13	45	53	59	G6
2-48	0.3 – 0.4	Weathered dolerite	32	2.3	12	57	72	76	G6

LL = Liquid limit; GM = Grading Modulus; P.I = Plasticity Index; COLTO = Standard Specifications for Road and Bridge Works for State Road Authorities; Committee of Land Transport Officials.

Notes:

- 1) Laboratory rated this sample incorrectly as G6 quality.
- 2) Laboratory rated this sample incorrectly as G8 quality.
- 3) Laboratory rated this sample incorrectly as G7 quality.
- 4) Laboratory rated this sample incorrectly as G6 quality.

The information contained in Table 5 above suggests the following:

5.6.1. Very soft rock shale (typically light grey in colour)

'Average' strength and compaction characteristics generally resulted in a material with a G6 to G7 classification. The results thus suggest that very soft rock shale can potentially be utilised as G6 to G7 quality material but careful selection of materials will be required on site (so as not to use mudrock which has much poorer strength and compaction characteristics). The suitability of candidate materials out of this geological group must be confirmed during the construction stage with appropriate laboratory testing.

5.6.2. Weathered dolerite

Samples of weathered dolerite that were tested recorded 'good' strength and compaction characteristics and were rated as G6 quality. This material can thus be recommended as a potential construction material. The biggest potential problem foreseen with the use of this source is the excavatibility of the material, partly due to soft rock or harder formations that will be encountered near surface and/or the presence of abundant hard rock dolerite boulders.

5.7. Soil corrosivity

Table 6 below summarises the pH and conductivity values that were measured to assess the potential corrosivity of the in situ soils.

Table 7: Soil corrosivity of in-situ soils within the Phase 2 area.

TP NO.	DEPTH (m)	MATERIAL	рН	ELEC. CONDUCTIVITY (μS/m)	RATED CORROSIVITY ¹
2-2	0.5	Transported soils	8.1	5.4	Not corrosive
2-2	0.8	Calcareous residual	8.13	3.7	Not corrosive
2-3	0.7	Calcareous residual	8.24	5.3	Not corrosive
2-4	0.7	Calcareous residual	8.17	4.2	Not corrosive
2-5	0.5	Transported soils	8.23	8.5	Not corrosive

TP	DEPTH	MATERIAL	рН	ELEC. CONDUCTIVITY	RATED
NO.	(m)			(μS/m)	CORROSIVITY ¹
2-6	2.0	Residual shale	8.05	27.0	Corrosive
2-7	0.5	Transported soils	7.75	12.1	Mildly corrosive
2-8	1.2	Residual shale	8.19	13.4	Mildly corrosive
2-8	2.2	Residual shale	8.06	27.0	Corrosive
2-11	0.6	Calcareous residual	8.27	5.2	Not corrosive
2-14	1.0	Calcareous residual	8.35	4.9	Not corrosive
2-16	0.3	Transported soils	8.65	4.4	Not corrosive
2-16	0.8	Calcareous residual	8.07	6.6	Not corrosive
2-18	0.4	Transported soils	8.05	56.0	Very corrosive
2-20	0.6	Calcareous residual	8.44	2.0	Not corrosive
2-21	0.5	Transported soils	8.02	5.9	Not corrosive
2-23	0.8	Calcareous residual	8.11	6.7	Not corrosive
2-24	0.4	Transported soils	7.06	7.9	Not corrosive
2-27	0.7	Transported soils	8.05	6.6	Not corrosive
2-27	1.1	Calcareous residual	8.09	5.5	Not corrosive
2-31	0.8	Calcareous residual	8.01	5.1	Not corrosive
2-36	0.4	Transported soils	7.96	4.8	Not corrosive
2-36	1.0	Calcareous residual	8.07	3.8	Not corrosive
2-39	0.4	Transported soils	8.15	6.5	Not corrosive
2-43	0.6	Calcareous residual	8.13	26.5	Corrosive
2-44	0.6	Transported soils	8.04	7.8	Not corrosive
2-46	0.5	Transported soils	8.14	9.3	Not corrosive
2-46	1.5	Residual shale	8.32	24.8	Corrosive
2-47	0.5	Transported soils	8.09	7.0	Not corrosive
2-47	1.2	Residual shale	8.37	14.3	Mildly corrosive

1 Low cost housing, CSIR Division of building technology 1987.

The majority of samples are rated as *not corrosive* with low electrical conductivity values. Only a few samples tested as *mildly corrosive* to *corrosive*. The measured pH values indicate that the in-situ soils are slightly alkaline.

It is generally expected that none of the in-situ soils that will be encountered on site can be regarded as highly corrosive, such as to necessitate extensive remedial measures. The present land use in certain regions of the study area may however result in localised areas where this aspect may be problematic.

6. RESIDENTIAL SITE CLASSES

The residential site classes are derived from the publication: "Code of Practice – Foundations and Superstructures for single storey residential buildings of masonry construction" The Joint Structural Division of SAICE and IstructE, 1995.

The different founding horizons, their expected foundation behaviour and expected range of soil movements (corresponding to a particular site class), are summarised in Table 8 below.

Table 8: Expected foundation behaviour and corresponding site classes

Soil/rock type	Principal character of founding material	Expected range of soil movement	Site
Transported soils ¹	Expansive	Less than 7.5mm	Н
Calcareous residual shale/mudstone	Expansive	7.5mm to 15.0mm	H1
Very soft rock shale ²	Stable	Negligible	R
Soft rock or harder dolerite	Stable	Negligible	R